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FOREWORD 
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Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations 
and recommended procedures are given. Below is a complete list of the reports 
in the series. 
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1.0 STATENI3JT OF THE PROBLEN 

This monograph will present both the theoretical and computational 
aspects of Dynamic Programming. The development of the subject matter in 
the text will be similar to the manner in which Dynamic Programming itself 
developed. The first step in the presentation will be an explanation of 
the basic concepts of Dynamic Programming and how they apply to simple 
multi-stage decision processes. This effort will concentrate on the meaning 
of the principle of Optimality, optimal value functions, multistage decision 
processes and other basic concepts. 

After the basic concepts are firmly in mind, the applications of these 
techniques to simple problems will be useful in acquiring the insight that 
is necessary in order that the concepts may be applied to more complex 
problems. The formulation of problems in such a manner that the techniques 
of Dynamic Programming can be applied is not always simple and requires 
exposure to many different types of applications if this task is to be 
mastered. Further, the straightforward Dynamic Programming formulation 
is not sufficient to provide answers in some cases. Thus, many problems 
require additional techniques in order to reduce computer core storage 
requirements or to guarantee a stable solution. The user is constantly 
faced with trade-offs in accuracy, core storage requirements, and computation 
time. All of these factors require insight that can only be gained from,the 
examination of simple problems that specifically illustrate each of these 
problems. 

Since Dynamic Progrsmmin g is an optimization technique, it is expected 
that it is related to Calculus of Variations and Pontryagin's Maximum 
Principle. Such is the case. Indeed,.it is possible to derive the Euler- 
Lagrange equation of Calculus of Variations as well as the boundary condition 
equations from the basic formulation of the concepts of Dynamic Programming. 
The solutions to both the problem of Lagrange and the problem of Mayer can 
also be,derived from the Dynamic Programming formulation. In practice, 
however, the, theoretical application of the concepts of Dynamic Programming 
present a different approach to some problems that are not easily formulated 
by conventional techniques, and thus provides a powerful theoretical tool 
as well as a computational tool for optimization problems. 

The fields of stochastic and adaptive optimization theory have recently 
shown a new and challenging area of application for Dynamic Programming. 
The recent application of the classical methods to this type of problem has 
motivated research to apply the concepts of Dynamic Programming with the hope 
that insights and interpretations afforded by these concepts will ultimately 
prove useful. 
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2.0 STATE OF THE ART 

2.1 Development of Dynamic Programming 

The mathematical formalism known as Wynsmic Programming" was developed 
by Richard Bellman during the early 1950's with one of the first accounts 
of the method given in the 1952 Proceedings of the Academy of Science 
(Reference 2.1.1). The name itself appears to have been derived from the 
related discipline of Linear Programming, with the over-riding factor in 
the selection of this name stemming more probably from the abundance of 
research funding available for linear programming type problems, than from 
the limited technical similarity between the two. 

Dynamic Programmin g did not take long to become widely applied in many 
different types of problems. In less than 15 years after its origination 
it has found its way into many different branches of science and is now 
widely used in the chemical, electrical and aerospace industries. However, 
even the most rapid perusal of any of Bellman's three books on the subject 
(Reference 2.1.2, 2.1.3, and 2.1.4) makes one point very clear: the field 
in which Dynamic Progr amming finds its most extensive application is not 
that of science, but of economics, with the problems here all rather loosely 
groupable under the heading of getting the greatest amount of return from 
the least amount of investment. Of the several factors contributing to 
this rapid growth and development, no small emphasis should be placed on the 
vigorous application program conducted by Bellman and his collegues at Rand 
in which a multitude of problems were analyzed using the method, and the 
results published in many different Journals, both technical and non-technical. 
A brief biographical sketch accompanying an article of Bellman's in a recent 
issue of the Saturday Review, (Ref. 2.1.5) states that his publications 
include 17 books and over 400 technical papers, a not-insignificant portion 
of which deal with the subject of Dynamic Programming. 

Historically, Dynamic Programming was developed to provide a means of 
optimizing multi-stage decision processes. However, after this use was 
finally established, the originators of Dynamic Programming began to use 
their mathematical licenses by considering practically all problems as 
multistage decision processes. There were sound reasons behind such attempts. 
Firstj the solution of many practical problems by the use of,the classical 
method of Calculus of Variations was extremely complicated and sometimes 
impossible. Second, with the fields of high speed computers and mass data 
processing systems on the threshold, the idea of treating continuous systems 
in a multi-stage manner was very feasible and promising. This new break- 
through for Dynamic Progr amming gave rise to a study of the relationships 
between the Calculus of Variation and Dynamic Programming and applications 
to trajectory processes and feedback control. 
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The extension of Dynamic Programmin g to these other fields, however, 
presented computational problems. For example, it became necessary to 
study topics such as accuracy, stability and storage in order to handle 
these more complicated problems. One of the beauties of Dynamic Programming 
came to rescue in solving some of these problems. It is idiosyncrasy 
exploitation. Whereas problem peculiarities usually are a burden to classical 
techniques, they are usually blessings to the dynamic programmer. It is 
possible to save computation time, to save storage and/or to increase accuracy 
by exploiting problem peculiarities in Dynamic Programming. 

An understanding of Dynamic Programming hinges on an understanding of 
the concept of a multi-stage decision process, a concept which is most 
easily described by means of an example. Consider a skier at the top of 
a hill who wishes to get down to the bottom of the hill as quickly as 
possible. Assume that there are several trails available which lead to 
the bottom and that these trails intersect and criss-cross one another as 
the slope is descended. The down hill path which is taken will depend only 
on a sequence of decisions which the skier makes. The first decision consists 
of selecting the trail on which to start the run. Each subsequent decision 
is made whenever the current trail intersects some new trail, at which point 
the skier must decide whether to take the new trail or not. Thus, associated 
with each set of decisions is a path leading to the bottom of the hill, and 
associated with each path is a time, namely the time it takes to negotiate 
the hill. The problem confronting the skier is that of selecting that 
sequence of decisions (i.e., the particular combination of trails) which 
result in a minimum run time. 

From this example, it is clear that a multi-stage decision process 
possesses three important features: 

(1) To accomplish the objective of the process (in the example 
above, to reach the bottom of the hill) a sequence of 
decisions must be made. 

(2) The decisions are coupled in the sense that the ntJ decision is 
affected by all the prior decisions, and it, in turn, effects 
all the subsequent decisions. In the skier example, the very 
existence of an n4fi decision depends on the preceding decisions. 

(3) Associated with each set of decisions there is a number which 
depends on all the decisions in the set (e.g., the time to 
reach the bottom of the hill). This number which goes by a 
variety of names will be referred to here as the performance 
index. The problem is to select that set of decisions which 
minimizes the performance index. 



There are several ways to accomplish the specified objective and at the 
same time minimize the performance index. The most direct approach would 
involve evaluating the performance index for every possible set of decisions. 
However, in most decision processes the number of different decision sets is 
so large that such an evaluation is computationally impossible. A second 
approach would be to endow the problem with a certain mathematical structure 
( e.g., continuity, differentiability, analyticity, etc.), and then use a 
standard mathematical technique to determine certain additional properties 
which the optimal decision sequence must have. Two such mathematical 
techniques are the maxima-minima theory of the Differential Calculus and 
the Calculus of Variations. A third alternative is to use Dynamic Programming. 

Dynamic Programming is essentially a systematic search procedure for 
finding the optimal decision sequence; in using the technique it is only 
necessary to evaluate the performance index associated with a small number 
of all possible decision sets. This approach differs from the well-known 
variational methods, in that it is computational in nature and goes directly 
to the determination of the optimal decision sequence without attempting to 
uncover any special properties which this decision sequence might have. In 
this sense the restrictions on the problem's mathematical structure, which 
are needed in the variational approach, are totally unnecessary in Dynamic 
Programming. Furthermore, the inclusion of constraints in the problem, a 
situation which invariably complicates a solution of the variational methods, 
facilitates solution generation in the Dynamic Programming approach since 
the constraints reduce the number of decision sets over which the search 
must be conducted. 

The physical basis for Dynamic Programming lies in the "Principle of 
Optimality," a principle so simple and so self -evident that one would 
hardly expect it could be of any importance. However, it is the recognition 
of the utility of this principle along with its application to a broad 
spectrum of problems which constitutes Bellman's major contribution. 

Besides its value as a computational tool, Dynamic Progr arming is also 
of considerable theoretical importance. If the problem possesses a certain 
mathematical structure, for example, if it is describable by a system of 
differential equations, then the additional properties of the optimal 
decision sequence, as developed by the Maximum Principle or the Calculus 
of Variations, can also be developed using Dynamic Programming. This feature 
gives a degree of completeness to the area of multi-stage decision processes 
and allows the examination of problems from several points of view. Further- 
more, there is a class of problems, namely stochastic decision processes, 
which appear to lie in the variational domain, and yet which escape analysis 
by means of the Variational Calculus or the Maximum Principle. As will be 
shown, it is a rather straightforward matter to develop the additional 
properties of the optimal stochastic decision sequence by using Dynamic 
Programming. 

5 



The purpose of this monograph is to present the methods of Dynamic 
Programmin g and to illustrate its dual role as both a computational and 
theoretical tool. In keeping with the objectives of the monograph series, 
the problems considered for solution will be primarily of the trajectory 
and control type arising in aerospace applications. It should be mentioned 
that this particular class of problems is not as well suited for solution 
by means of Dynamic Programming as those in other areas. The systematic 
search procedure inherent in Dynamic Programming usually involves a very 
large number of calculations often in excess of the capability of present 
computers. While this number can be brought within reasonable bounds, 
it is usually done at the expense of compromising solution accuracy. 
However, this situation should change as both new methods and new computers 
are developed. 

The frequently excessive number of computations arising in trajectory 
and control problems has somewhat dampened the initial enthusiasm with which 
Dynamic Programming was received. Many investigators feel that the 
extensive applications of Dynamic Programming have been over-stated and 
that computational procedures based upon the variational techniques are more 
suitable for solution generation. However, it should be mentioned that the 
originators of these other procedures can not be accused of modesty when 
it'comes to comparing the relative merits of their own technique with some 
other. The difficulty arises in that each may be correct for certain classes 
of problems and unfortunately, there is little which can be used to determine 
which will be best for a specific problem since the subject is relatively new 
and requires much investigation. 

Without delineating further the merits of Dynamic Programming in the 
introduction it is noted that current efforts are directed to its application 
to more and more optimization problems. Since an optimization problem can 
almost always be modified to a multi-stage decision processes, the extent of 
application of Dynamic Programming has encompassed business, military, 
managerial and technical problems. A partial list of applications appears 
in Ref. 2.1.2. Some of the more pertinent fields are listed below. 

Allocation processes 
Calculus of Variations 
Cargo loading 
Cascade processes 
Communication and Information Theory 
Control Processes 
Equipment Replacement 
Inventory and Stock Level 
Optimal Trajectory Problems 

Probability Theory 
Reliability 
Search Processes 
Smoothing 
Stochastic Allocation 
Transportation 
Game Theory 
Investment 
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2.2 Fundamental Concepts and Applications 

Section 2.1 presented the example of a skier who wishes to minimize 
the time required to get to the bottom of the hill. It was mentioned that 
the Dynamic Programming solution to this problem resulted in a sequence of 
decisions, and that this sequence was determined by employing the Principle 
of Optimality. In this section, the Principle of Optimality and other basic 
concepts will be examined in detail, and the application of these concepts 
will be demonstrated on some elementary problems. 

The Principle of Optimality is stated formally in Ref. 0.4 as follows: 

An optimal policy has the property that 
whatever the initial state and the initial 
decisions are, the remaining decisions must 
constitute an optimal policy with regard to 
the state resulting from the first decision. 

It is worthy to note that the Principle of Optimality can be stated 
mathematically as well as verbally. The mathematical treatment has been 
placed in section 2.4 in order that the more intuitive aspects can be 
stressed without complicating the presentation. The reader interested in 
the mathematical statement of the Principle is referred to Sections 2.4.1 
and 2.4.2 

Before this principle can be applied, however, some measure of the 
performance which is to be optimized must be established. This requirement 
introduces the concept of the optimal value function. The optimal value 
function is most easily understood as the relationship between the parameter 
which will be optimized and the state of the process. In the case of the 
skier who wishes to minimize the time required to get to the bottom of the 
hill, the optimal value function is the minimum run time associated with 
each intermediate point on the hill. Here the state of the process can be 
thought of as the location of the skier on the hill. The optimal value 
function is referred to by many other names, depending upon the physical 
nature of the problem. Some of the other names are t'cost function." 
"performance index," l'profit," or "return function." However, whatever the 
name, it always refers to that variable of the problem that is to be optimized. 

Now that the concept of an optimal value function has been presented, 
the Principle of Optimality can be discussed more easily. In general, the 
n stage multi-decision process is the problem to which Dynamic Programming 
is applied. However, it is usually a very difficult problem to determine 
the optimal decision sequence for the entire n stage process in one set of 
computations. A much simplier problem is to find the optimum decision of 
a one stage process and to employ Dynamic Programming to treat the n stage 
process as a series of one stage processes. This solution requires the 
investigation of the many one stage decisions that can be made from each 
state of the process. Although this procedure at first may appear as the 
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"brute forcel' method (examining all the combinations of the possible decisions), 
it is the Principle of Optimality that saves this technique from the unwieldy 
number of computations involved in the "brute force" method. This reasoning 
is most easily seen by e xamining a two stage process. Consider the problem 
of finding the optimal path from a point A to the LL' in the following sketch. 

The numbers on each line represent the "cost" of that particular transition. 
This two stage process will now be treated as two one-stage processes. The 
Principle of Optimality will then be used to determine the optimal decision 
sequence. Starting at point A, the first decision to be made is whether to 
connect point A to point B or point C. The Principle of Optimality states, 
however, that whichever decision is made the remaining choices must be 
optimal. Hence, if the first decision is to connect A to B, then the 
remaining decision must be to connect B to E since it is the optimal path 
from B to line LL'. Similarly, if the first decision is to connect A to C, 
then the remaining decision must be to connect C to E. These decisions enable 
an optimal cost to be associated with each of the points B and C; that is, 
the optimal cost from each of these points to the line LL'. Hence, the 
optimal value of B is 5 and of C is 4 since these are the minimum costs 
from each of the points to line LL'. 

The first decision can be found by employing the Principle of Optimality 
once again. Now, however, the first decision is part of the remaining 
sequence, which must be optimal. The optimal value function must be 
calculated for each of the possibilities for the first decision. If the 
first decis,ion is to go to B, the optimal value function at point A is the 
cost of that decision plus the optimal cost of the remaining decision, or, 
3+5=8. Similarly, the optimal value function at point A for a choice 
of C for the first decision is 2 + 4 = 6. Hence, the optimal first decision 
is to go to C and the optimal second decision is to go to E. The optimal 
path is thus, A-C-E. 
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II. 

Although the previous problem was very simple in nature, it contains 
all the fundamental concepts involved in applying Dynamic Programming to 
a multi-stage decision process. The remainder of this section uses the 
same basic concepts and applies them to problems with a larger number of 
stages and dimensions. 
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2.2.1 Multi-Stage Decision Problem 

The basic ideas behind Dynamic Progr amming will now be applied to a 
simple travel problem. It is desired to travel from a certain city, A, 
to a second city, X, well removed from A. 

A X 

Since there are various types of travel services available to the minimum cost 
from one intermediate city to another will vary depending upon the nature 
of the transportation. In general, this cost will not be strictly linear 
with distance. The intermediate cities-appear in the sketch above as the 
letters B, C, D, etc. with the cost in traveling between any two cities entered 
on the connecting diagonal. The problem is to determine that route for 
tihich the total transportation costs are a minimum. A similar problem is 
treated in Ref. 2.4.1. 

Obviously, one solution to this problem is to try all possible paths 
from A to X, calculate the associated cost, and select the least expensive. 
Actually, for "small"problems this approach is not unrealistic. If, on the 
other hand, the problem is multi-dimensional, such a "brute force" method 
is not feasible. 

First, consider the two ways of leaving city A. It is seen that the 
minimum cost of going to city B is 7, and city C is 5,. Based upon this 
information a cost can be associated with each of the cities. Since there 
are no less expensive ways of going from city A to these cities, the cost 
associated with each city is optimum. A table of costs can be constructed 
for cities B and C as follows: 

10 



Citg 

B. 
C 

optimum cost Path for Optimum Cost 

7 A-B 
5 A-C 

Now, the cost of cities D, E, and F will be found. The cost of D is 7 + 2=9. 
Since there are no other ways of getting to D, 9 is the optimum value. The 
cost of city E,.on the other hand, is 13 by way of B and only 8 by way of C. 
So the optimum value of city E is 8. The cost for city F is 10 by way of 
city C. A table can now be constructed for cities D, E, and F as follows: 

Cits OPthum cost 

D 9 B 
E 8 C 
F 10 C 

At this point, it is worthy to note two of the basic concepts that were used. 
Although they are very subtle in this case, they are keys to understanding 
Dynamic Programming. 

First, the decision to find the cost of city E to be a minimum by choosing 
to go via city C is employing the Principle of Optimality. In this case, the 
optimal value function, or cost, was optimized by making the current decision 
such that all the previous decisions (including the recent one) yield an 
optimum value at the present state. In other words, there was a choice of 
going to city E via city B or C and city C was chosen because it optimized 
the optimal value function, which sums the cost of all previous decisions. 
One more stage will now be discussed so that the principles are firmly in 
mind. Consider the optimum costs of cities G, H, I, and J. There is no 
choice on the cost of city G. It is merely the optimum cost of city D (9) 
plus the cost of going to city G from city D (=8), or 17. City H can be 
reached via city D or city E. In order to determine the optimum value for 
city H, the optimum cost of city D plus the cost of travel from D to H is 
compared to the optimum cost of E plus the cost of travel from E to H. 
In this case the cost via city E is 8 + 4 = 12 whereas the cost via D is 
9 + 14 = 23. Hence, the optimal value of city H is I2 and the optimum path 
is via city E. By completely analogous computations the optimal-cost and 
optimum path for the remaining cities can be found and are shown below: 

Citg optimum cost Via 

G 
H 
I 
J 
K 
L 
M 
N 
0 
X 

17 D 
12 E 
10 E 
14 F 
18 H 
14 I 
Il.2 I 
20 L 
16 L 
22 0 
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previous computations are sufficient for determining optimum path. From 
tables that have been constructed the optimum decision can be found. 
following sketch shows the optimum decision for each point by an arrow. 

G 

optimum path, shown by a heavy line, can be found by starting at city X 
following the arrows to the left. It should be noted that the preceding 

computations were made from left to right, This construction then resulted 
in an optimum path which was determined from right to left. Identical results 
could have been obtained if the computations are performed from right to 
left. The following sketch shows the optimum decisions for this method of 
attack. 
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The optimum path can be found by starting at city A and following the arrows 
from left to right. This path is shown by a heavy line in the sketch. 

There is an advantage to each of these computational procedures depending 
upon the nature of the problem. In some problems, the terminal constraints 
are of such a nature that it is computationally advantageous to start computing 
at the end of the problem and progress to the beginning. In other problems, 
the reverse may be true. The preceding sample problem was equally suitable 
to either method. Depending upon the formulation of the problem, the costs 
for typical transitions may not be unique (the cost could depend upon the 
path as in trajectory problems) as they were in the sample problem. This 
may be a factor that will influence the choice of the method to be used. 
To summarize, the optimal value function and the Principle of Optimality 
have been used to determine the best decision policy for the multi-stage 
decision process: the optimal value function kept track of at least expensive 
possible cost for each city while the Principle of Optimality used this 
optimum cost as a means by which it could make a decision for the next 
stage of the process. Then, a new value for the optimal value function was 
computed for the next stage. After the computation was complete, each stage 
had a corresponding decision that was made and which was used to determine 
the optimum path. 
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2.2.2 Applications to the Calculus of Variations 

So far, the use of Dynamic Programmin g has been applied to multi-stage 
decision processes. The same concepts can, however, be applied to the 
solution of continuous variational problems providing the problem is 
formulated properly. As might be expected, the formulation involves a 
discretizing process. The Dynamic Programming solution will be a discretized 
version of the continuous solution. Providing there are no irregularities, 
the discretized solution converges to the continuous solution in the limit 
as the increment is reduced in size. It is interesting to note that 'the 
formal mathematical statement of the concepts already introduced can be 
shown to be equivalent to the Euler-Lagrange equation in the Calculus of 
Variations in the limit (see Section 2.4). The two classes of problems 
that are considered in this section are the problem of Lagrange and the 
and the problem of Mayer. The general computational procedure for the 
application of Dynamic Programming to each of these problem classes will 
be discussed in the following paragraphs. Some illustrative examples are 
included in Sections 2.2.2.1, 2.2.2.2, and 2.2.2.3 so that the specific 
applications can be seen. 

The problem of Lagrange can be stated as finding that function y(x) 
such that the functional 

(2.2.1) 

is a minimum. That is, of all the functions passing through the points 
(x0, Y. ) and h , y ), find that particular one that minimizes J. The 
classical trea men of this problem is discussed in Reference (2.1). e E 
The approach taken here is to discretize this space in the region of 
interest. The following sketch indicates how the space could be divided. 
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The integral in Equation 2.2.1 can now be written in its discrete form as 

(2.2.2) 
i=l 

The evaluation of the ith term can be seen for a typical transition in the 
above sketch. The choiz of yt. can be thought of as being the decision 
parameter. The similarities to'the previous examples should now be evident. 
Each transition in the space has an associated "cost" just as in the previous 
travel problem. 
(XfJ Yf) 

The problem is to find the optimum path from (x0, y ) to 
such that J, or the total cost, is minimized. Obviously, i? a 

fairly accurate solution is desired, it is not advantageous to choose big 
increments when dividing t@e space. It must be kept in mind, however, that 
the amount of computationinvolved increase quite rapidly as the number of 
increments increases. A trade-off must be determined by the user in order 
to reach a balance between accuracy and computation time. 

The problem of Mayer can be shown to be equivalent to the problem of 
Lagrange (see Ref. 2.1). This problem will be included in this discussion 
because it is the form in which guidance, control and trajectory optimization 
problems usually appear. The general form of the equations for a problem of 
the Mayer type can be written as 

2 =f (%, u) (2.2.3) 
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where x is an n dimentional state vector and u is a r dimensional control 
vector. It is desired to minimize a function of the terminal state and 
terminal time, i.e., 

subject to the terminal constraints 

y=LxI), $’ j=l,m 

(A more detailed statement of the problem of Nayer can be found in Section 
2.4.8 or Reference 2.1). 

The approach that is used to solve this problem with Dynamic Programming 
is quite similar to the Lagrange formulation. The state space component is 
divided into many increments. The ltcostlV of all the allowable transitions is 
then computed. Each diffierent path eminating of the same point in the 
state'space corresponds to a different control, which can be thought of as 
being analogous to the decision at that point. With these preliminary remarks 
in mind, some illustrative examples will now be presented. 
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2.2.2.1 Shortest Distance Between Two Points 

The previous travel problem was intentionally made simple so that the 
concepts of Dynamic Programmin g could be conveyed easily. Most practical 
problems involve many more decisions and many more choices for each decision. 
To give the reader an idea of how much is involved in a slightly more 
complicated problem, an example of a 3 dimensional problem will be given. 

The problem to be considered is the Lagrange Problem of Calculus of 
Variations, i.e., minimize the following functional 

C,d 
CT= ;*zin 

s F(w,y,y’)dr (2.2.4) 

a,b 
This is the basic problem of the Calculus of Variations with fixed end 

points. The classical methods of the solution are well known and are shown 
in Ref. 2.2.1. The approach of Dynamic Programming is to break the interval 
into many segments. Each segment corresponds to one stage of a multistage 
decision process. The object is to find the optimum choice of y1 for each 
segment such that 

is minimized., An example of this kind of problem is that of finding the 
shortest path between two points. Although the solution to this problem is 
obvious, it is informative to try to solve the problem with the techniques 
of Dynamic Programming. It should be noted that the answer from the Dynamic 
Programming approach will not be exact because of the discretixing that must 
be performed in order to formulate the problem as a multistage decision 
process. The answer will approach the correct answer in the limit as the 
number of grids is increased. The.specific problem to be considered is the 
shortest path from the origin of a rectangular 3 space coordinate system 
to the point (5,6,7). The discretizing is performed by constructing cubic 
layers around the origin, with each layer representing a decision stage. 
The cost of going from a point on one layer to a point on the next layer 
is the length of a line connecting the two points, i.e., 

(2.2.5) 

where (xl, y19 zl) is the point on one layer and&, y2, 22) is the point on 
the other layer. 
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In order to keep the problem manageable only two such layers will be used. 
The first layer will be a cube with one vertex at the origin and the other 
vertices at (O,O,l) (O,l,O), (O,l,l), (l,O,O), (l,O,l), (l,l,O), and (l,l,l). 
The permissible transitions from the origin to the first layer are shown 
below with the corresponding costs. 

From To 

(0, 0, 0) (0, 0, 1) 1.000 
1.000 
1.414 
1.000 
1.414 
1.414 
1.732 

The second layer chosen is the cube with one vertex at the origin and the 
others (0, 0, 41, (0, 4, o>, (0, 4, 41, (4, 0, 01, (4, 0, 41, (4, 49 01, 
and (4, 4, 4). In addition to the transitions from the vertices of the first 
layer to the vertices of the second layer, transitions will also be allowed 
to points between the vertices of the second layer, e.g. (4, 0, 2). This 
allows more possible choices for the transitions and thus nermits the 
Dynamic Programming solution to be closer to the actual solution. 

As mentioned earlier, one of the beauties of Dynamic Programming is 
that the problem peculiarities can be used to simplify the problem. This 
advantage will be utilized here by eliminating some of the possible transitions 
from the first layer to the second layer. The philosophy behind this 
elimination is that a certain amount of continuity is assumed in the solution. 
It is not expected that the solution will consist of arcs which go in one 
direction for the first transition and then in the opposite direction for 
the second transition. For this reason, only the transitions from layer 
t'onet' to layer %worr that has been permitted are those that correspond 
to light rays that would propagate from the first point of the transition. 

With these considerations in mind, the permissible transitions from the 
first layer to the second will,be found. The various points of the second 
layer that are allowable transition points are listed below: 
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The cost of the allowable transitions from the first layer to the second 
layer are shown below: 

\ FROM 
To \ 

004 
024 
040 
042 
044 
204 
224 
240 
2k2 
244 
400 
402 
404 
420 
422 
424 
440 

E 

011 

3.162 
3.162 
3.162 
3.162 
4.242 
3.741 
3.741 
3.741 
3.741 
4.690 

5.009 

5.099 
5.099 
5.099 
5.830 

100 

3.000 
3.605 
5.000 
3.605 
4.123 
5.385 
5.000 
5.385 
6.403 

001 

3.000 
3.605 

5.000 
3.605 
4.123 

5.385 

5.000 

5.385 

6.403 

010 

3.000 
3.605 
5.000 

3.605 
4.123 

5.000 
5.385 
6.403 

101 110 

3.162 
3.741 

5.099 
3.162 
3.741 

5.099 
3.162 
3.162 
4.242 
3.741 

2-g 
5:099 
5.099 
5.830 

3.162 
3.714 
5.099 

3.162 
3.714 
5.099 
3.162 
3.741 
5.009 
3.162 
3.741 
5.099 
4.242 
4.609 
5.830 

111 

3.316 
3.316 
3.316 
3.316 

4% 
3:316 
3.316 
3.316 

';*;z 
3:316 

4';:: 
3:316 
4.358 
4.358 

;*:;z . 

The blank areas represent transitions that are not allowed because of reasons 
previously stated. The transitions from the second layer to the terminal 
point are shown in the following table: 
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I 
(5, 6, 7) 

COST .._I 

8.366 
7.071 
8.831 
7.348 
6.164 
7.348 
5.830 
9.591 
6.164 
4.690 
9,273 
7-874 
6.782 
8.124 
6.480 
5.099 
7.348 
5.477 
3.7w 

Now that the cost of each transition has been established, the methods of 
Dynamic Progrsmmin g can be used to find the optimum path from the origin to 
point (5, 6, 7). The first step is the definition of the optimum cost for 
each point. Working backwards from point (5, 6, 7) the optimum cost of 
the points on the second layer are shown in the previous table. The optimum 
cost of the points on the first layer can be found by finding the path 
that gives the minimum value of the total cost of going from (5, 6, 7) to 
layer 2 and from layer 2 to layer 1. As an example, consider the optimum 
cost of point (0, 0, 1). Table 2.2.1 shows the various paths from (5, 6, 7) 
to (0, 0, 1) through layer 2. 

POINT (0, 0, 1) PATH - 
MINIMUM 

COST 

i2”: g> 

(4: g: 

” ;9 

0: ;: 

;; ;j 
3.000 + 8.366 = 11.366 
3.605 3.605 5.000 + -I- + 6.164 7.348 7.071= = = 

4) i] 

11.164 10.943 10.676 

4.123 + 5.830 = 9.953 9.953 
5.000 5.385 + + = 6.782 4.690 = 11.782 10.075 

[;, ;, ;j 5.385 + 5.099 = lo.484 
9 , 6.403 + 3.7~ = lo.u,,i. 

Table 2.2.1 
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In a,completely analogous manner the minimum cost for each of the other points 
on the first layer can be found. They are shown below. 

MINiMJM 
POINT m VIA 

g, "1, ;] 9.953 

(0: 1: 1) 10.075 9.380 g, (2: 24, 4: ;] 4) 
ii> fjh "1j lO.lw, 

0: 1: 01 9.571 9.571 [;9 (4: ;, 4: ;j 4) 
(1, 1, 1) 9J-45 (2, 2, 4) 

The optimum value of the cost of the origin is found similarly by computing 
its cost for the various paths from layer 1 and by using the optimal values 
of those points. The following table shows those values: 

POINT (0, 0, 0) PATH - 
MINIMUM 

COST m 

1,000 + 9.953 = 10.953 
1.000 + 10.075 = 11.075 
1.4l4 + 9.380 = 10.794 10.794 
1iooo + lO.l&!+ = ll.l.44 
1.414 + 9.571 =10.985 
1.414 + 9.571= 10.985 
1.732 + 9.146 = 10.878 

The solution is now complete, The optimum path can be found by tracing back 
the optimum values from the previous tables. The optimum path to the origin 
from layer 1 iS seen to be via point (0, 1, 1) from the previous table. With 
this information the optimum path to (0, 1, 1) can be found to be via point 
(2, 4, 4) from Table 2.2.1. This path is shown in the following sketch along 
with the exact solution. 
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The exact value of the minimal distance between (0, 0, 0) and (5, 6, 7) can 
easily be found from the Pathagorean Theorem as 

J=J I 
(5-*f + (6-o)2 t u-of = r i/O = /O. 488 

This value can be compared to the 10.794 that was obtained from Dynamic Programming 
approach. This difference is consistent with previous comments which were 
made on the accuracy of Dynamic Programming solutions and the effects of 
discretizing the space. 
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2.2.2.2 Variational Problem with Movable Boundary 

Dynamic Progr amming will now be applied to the solution of a variational 
problem with a movable boundary. Consider the minimization of the functional 

(2.2.6) 

subject to the constraint that 

L/co, = 0 

6 = q-5 

This problem appears as an example in Ref. 2.2.2 to illustrate the classical 
solution of a problem with a movable boundary. Note that this problem dif- 
fers in concept from the preceding problem in that the upper limit of 
integration is not explicitly specified. However, as would be suspected from 
previous problems, the Dynamic Programming approach still involves the divi- 
sion of the space into segments and the calculation of the cost of each 
transition. The set of end points is located on the line vr = )c~ -5. As 
mentioned earlier, there are two ways to perform the Dynamic Programming 
calculations in most problems. One method initiates the computation at the 
first stage and progresses to the last stage; the second method begins the 
computation at the end of the process and progresses to the first stage. 
Both methods are equivalent and yield the same answers as shown in an earlier 
example. The following example will be partially solved by using the second 
method. (The number of computations prohibits the complete manual solution.) 
The other problems in this section use the first method. 

To begin the Dynamic Programming solution, the space is divided as shown 
in the following sketch, 
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The circle q-m is the classical solution to the stated problem. 
The line segments that follow the solution represent the expected Dynamic 
Prograsuning solution. The computation begins with the calculation of the 
cost of all the possible transitions between the various points in the space. 
The minimum cost of each point is then determined in the same manner as 
previous problems. The difference between this and previous problems is that 
there is a set of possible terminal points. This generality does not introduce 
any problems in the method of attack. It merely means that the optimum value 
of all the possible terminal points must be investigated and the best one 
must be selected. The following sketch shows the details for part of the 
computation that begins on the line y = x-5 and progress to the left. 

24 



6 

5 

9 

3 

I I I 
8 

I 
9 /O // 

The cost integral is represented by 

+qF 
i 5G 

A x, 

instead of the continuous form in Equation 2.2.6. The cost of each transition 
is shown, and the optimal value of the cost of each point is encircled. 
possible transitions that must be considered for each of the.above points 

The 

are shown below. 
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z 
I-M 

J 

J-M 

E, 

E-I 

E-J 

E-K 

E 

'F-I 

F-J 

F-K 

G, 

G-I 

G-J 

G-K 

.235 

.2 

.166 + .235 

.235 + .2 

0372 

.282 + .235 

.2 + .2 

.282 

.559 + .235 

.352 + .2 

-25 

= 0 .235 

= 0 .200 

= .401 

= 0 .435 

= .372 

= .517 

= 94 

= 0 ,282 

= .794 

= .552 

= 0 .250 

L 
D-E 

D-F 

D-G 

D-H 

c 

C-E 

C-F 

C-G 

C-H 

B 

B-E 

B-F 

B-G 

B-H 

A 

A-E 

A-F 

A-G 

A-H 

.166 + 372 

.235 + .282 

.372 + .25 

.527 

.282 + .372 

.2 + .282 

,282 + .25 

l 447 

.559 + .372 

.353 + .282 

.25 + .25 

.353 

1.05 f .372 

.745 + .282 

.471 -t .25 

933 

= .538 

= .517 0 
= .622 

= .527 

= .654 

= .a!+82 0 
= .532 

= ,447 

= .931 

= .635 

= .50 

= ,353 0 

= 1.422 

= 1.027 

= .721 

= .33 0 

This process continues until the optimal path can be found by following the 
decisions that were made by starting at the origin and progressing to the 
right. 
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2.2.2.3 Simple Guidance Problem 

As an example of the application of Dynamic Programming to a problem of 
the Mayer type, a simple guidance problem will be examined. Consider a 
throttlable vehicle with some initial condition state vector X(0) where 

X(0, = (2.2.7) 

and some initial mass 111 . It is desired to guide the vehicle to some terminal 
point x(f), Y(f) subjece to the constraint that its terminal velocity vector 
is a certain magnitude, i.e. 

(2.2.8) 

where t f is not explicitly specified. 

Further, it is desired to minimize the amount of propellant that is used 
in order to acquire these terminal conditions (this problem is equivalent 
to maximizing the burnout mass). In order to simplify the problem, a flat 
earth will be assumed and the vehicle being considered will be restricted 
to two control variables U 
0 5 u15 1. This variab I 

and U2. Ul is a throttle setting whose range is 
e applies a thrust to the vehicle equal to 

(2.2.9) 

where T 
m%e 

is the maximum thrust available. 
governs direction of thrust. 

U2 is the control variable that 
This variable is defined as the angle between 

the thrust vector and the horizontal. The following sketch shows the geometry 
of these parameters. 
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From this sketch, the following differential equations can be written for 
the motion of the vehicle 

and 

*= - La+ u, 
V 

(2.2.10) 

(2.2.11) 

(2.2.12) 

where T = the maximum thrust available max 

V = the exhaust velocity of the rocket. 

There are several ways to formulate this problem for a Dynamic Programming 
solution. The method used here is to represent the state of the vehicle by 
four parameters, x, y, k, and y. The mass is used as a cost variable. The 
four dimensional state space is divided into small intervals in each 
coordinate direction. The coordinates designated by all the combinations 
of various intervals form a set of points in the state space. Tne vehicle 
starts at the initial point in the state space with some initial mass. The 
control and mass change that are necessary to move the vehicle from this point 
to the first allowable set of points in the state space are then computed. 
This computation corresponds to the first set of possible control decisions. 
Each end point of the set of possible first decisions is assigned a mass 
(cost) and the path that gave the cost (for the first decision the path is 
obvious since it must have come from the origin ). 

The second decision is now investigated. The required control and the 
correspondtig mass change required to go from the set of points at the end 
of the first decision to the set of all possible points at the end of the 
second decision must now be calculated. (The initial mass used jn this 
second stage calculation is the mass remaining at the end of the first stage. 
However, each point corresponding to the end of the second decision will 
have more than one possible value of mass (depending on the point from which 
it came). Thus, since it is desired to minimize the fuel consumed or 
maximize the burnout mass, the largest mass is chosen as the optimum value 
for that particular point. The point from which this optimum path came 
is then recorded. 

> 
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This process continues in the same manner until an end point is reached. 
In this case, the end point is a set of points all of which have the same 
coordinates for x and y but have many combinations of x and y subject to 
the constraint that 

After the optimum mass is calculated for all possible terminal points, the 
best one is selected. The optimum path is then traced to the initial point 
just as was done in previous problems. 

Formulation 

The equations to be used to calculate the cost of each transition can 
be developed from Equations 2.2.10, 2.2.11 and 2.2.12. Since the transitions 
from one point to another point in the state space are assumed to be short 
in duration, it is assumed that the vehicle's mass is constant during the 
transition and that the acceleration in the x and y direction is constant. 
This is a reasonable assumption since the state space is divided into many 
smaller parts and the mass change is not very significant during a typical 
transition from one point to another. Thus, since the mass is practically 
constant and the control by the nature of its computation is constant during 
a transition, a constant acceleration is a reasonable assumption for a 
typical transition. 

The laws of constant acceleration motion can now be used for each short 
transition. The acceleration thaf. is required in order to force a particle 
to position 

3 an initial ve 
with the.velocity x2 at that position from a position xl with 

ocity of xl is 

;r= 2; - if 
2(x, 3,) 

Similarly, in the y direction 

(2.2.14) 

Now, recalling that the x and y components of thrust are 

(2.2.13) 
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equations 2.2.13, 2.2.14, 2.2.10 and 2.2.11 yield 

wf ii-;;,' 
L(/cboU2 =- II 1 & 2(x,-x,:,) =c, 

The control parameters are thus, 

(2.2.15) 

(2.2.16) 

(2.2.17) 

(2.2.18) 

Now that the throttle control is known, Ifi for the particular transition is 

(2.2.19) 

and the mass at the end of the transition is found to be 

where At can be found to be 

(2.2.20) 

(2.2.21) 
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The algorithm for solving this problem will now be discussed. First, the 
state space must be divided properly. To do this, an increment measure for 
each coordinate must be defined. Let A. be the increment measure of 
the it& coordinate so the extent of each%oordinate is Lj?,M& Us*, P? 
where L, 14, N, and P are integers that are large enough to make the msximm' 
value of each coordinate as close as possible to the maximum value needed 
by that coordinate without exceeding that maximum value. For instance, if 
the maximum value required by xl is 51, 324 ft. and it was decided to use 
% = 1,000 ft., then L would be chosen as 51. Since there is a set of 
terminal points, N and P must be chosen to accommodate max (;C,) and msx 
(Pf), respectively. 

The cost of all points ( -/S,,Z?~?~ , n23 , p,$ ) 
R = 0, &..,f 
-m = 0, (...,M 

77 = 0) /,...,n/ 

p = 0, (.*.,P 
must be found as previously distiussed. For this particular case, the initial 
point till be assumed to be (O,O,O,O>. The set of states that can result 
from the first decision includesthe following points: 
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As mentioned previously, the mass of the vehicle is computed for each point 
and is stored along with the control that was needed to get there. 

The second decision must come from a wealth of possibilities. If an 
approach similar to the shortest distance problem is taken (where the only 
permissible transitions eminate in rays from the initial point of the 
particular transition), a reasonable set of transitions for each point is 
obtained. To give the reader an idea of the number of points which are 
possible, the following table was constructed to show this set of points 
by using a shorthand notation for convenience (where @ = 0, Xi, 2X$. 

FROM TO 

( @ n @ 9 @ 9 %+) 

( @ s 0 B 2x3 s @ ) 

( @ , @ , @ ,2X& 1 or ( @ , @ , 2X3 , @ 1 

( @ t 2x2 s @ s @ ) 

( @ * 2x2 , @ 9 @ ) or ( @ . @ . @ , q+) 

( @ , @ , 2X3 , @ 1 or ( @ , 2X2 , @ , @ 1 

( @ s 2x2 , @ B 3 ) or ( @ s @ s 2X3 s @ ) 

or ( @ , @ , @ , 2X4 1 

( 2x1 s @ s @ 9 @ 1 

( 2X1 , @ , @ , @ 1 or ( @ , @ ,g ,2X4 1 

(2X1,@,@, @ )or( B,@ ,2X3, 0) 

( 2X1 , @ , @ , @ 1 or ( @ , Q. , 2X3 , @ 1 

or ( @ , @ , @ , 2X4 1 

( 23 , @ , @ . @ 1 or ( @ , 2X2 , @ , @ ) 

( 2X1 , @ , @ , @ 1 or ( @ , 2X2 , @ , @ 1 

or( 0.3 ,@ ,2X4 1 

( 2X1, @ , @ , @ 1 or ( @ ,2X2 , @ , @ 1 

or ( @ , @ , 2X3 , @ 1 

( 2x1.. 3 B @ s @ ) or ( @ 9 2X2 p @ s @ ) 

or ( @ , @ , 2X3 , @ 1 or ( @ , @ , @ , 2X4 1 
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The reader, no doubt, has a reasonable idea of the number of points that 
must be investigated for the second decision. This number continues to 
grow at a tremendous rate for subsequent decisions since each point at 
the end of the second stage is an initial point for the third stage and 
because theObecomes a@@) = 0, xi, 2 Xi, 3 xi) for the terminal points 
of the third stage. This fantastic increase in computation points is called 
the "curse of dimensionalityn of Dynamic Programming. It stems from the 
fact that as the number of dimensions of the state space increases; the 
number of computation' points of the problem increases as an where WI1 is 
the dimension of the state space and l'a" is the number of increments used 
for a typical coordinate. Section 2.3.3.1 will discuss dimensionality in 
more detail. 

34 



2.2.3 Maximum - Minimum Problem 

In order to demonstrate the more analytical applications of Dynamic 
Programmin g, a simple Maxima-Minima Problem will be examined. The procedure 
utilized to formulate a problem for the application of Dynamic Programming 
is not always immediately obvious. Many times the problem formulation for 
a Dynamic Progr amming solution is quite different from any other approach. 
The following problem will be attacked in a manner such that the Dynamic 
Programming formulation and method of attack can be seen. 

The problem is to minimize the expression 

(2.2.22) 

subject to the constraints 

K, + A-- f x3 = /o 

(A problem similar to this is often used by Dr. Bellman to introduce the 
concepts of Dynamic Programming). At first glance, the methods of Dynamic 
Programming do not seem to apply to this problem. However, if the problem 
is reduced to several smaller problems, the use of Dynamic Programming 
becomes apparent. Consider the minimization of the following three functions: 

$ = xf (2.2.23) 

4 = ( +2*; (2.2.24) 

Applying the constraintsix 
trivial result xl = 10. k 

= 10, x. 1 Otto th e first function give3 the 
T is resulg is not so helpful. However, if the 

constraints 

x, = A I 0 4 A, L /o 

x, 2 0 

(2.2.25) 
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are applied to Min (fl), the range of Min (f ) can be found for various 
admissible values of xl. This step can be thought of as the first stage 
of a three stage decision process, where the various choices for xl can 
be as many as desired within the limits 0=X, 4/O. 

Now that all the choices for the first decision have been investigated, 
the second decision must be considered. Again, care must be taken in the 
specification of the constraint equations. The optimal value function for 
the second decision is 

$=(-+2X; (2.2.26) 

The constraints on 3 and x2 are chosen to be 

X, + x2 = AZ OLAz g 10 (2.2.27) 

For each value of A2 that is to be investigated, there are many combinations 
of x, and x2 to be considered. More precisely, the number of combinations 
of "I and x2 to be considered is 
less than or equal to the A 

the same as the number of AlIs that are 

for A 5 
being considered, e.g., if Al was investigated 

comb~a;i~~s5~u,'I ;de&=tiedis being considered, then the following 
A 

%, x2 - - 
0 5 
5- 0 

The third decision does not require as much computation as the others in this 
case because of the original constraint equations. 

;“, + xz f z 
3 

= /o 
(2.2.28) 

XL ZO 

Since the first two decisions were investigated for many possible values of 
%and +x "1 2' it is only necessary to consider 

x, f x2 + x3 = IO 

because the various choices for 
3 possibilities have already been ' 

will specify 5 + x2 = 10 - 3 and these 
vestigated. 

The arithmetic solution will now be shown so that the previous discussion 
will be clear. For simplicity, only integers will be considered for the 
allowable values for xl, x2, and x3. A table can be constructed for the 
first decision as follows: 
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o 12 3 4 5 6 7 8 910 

f10 14 9 16 25 36 49 64 81 100 

The table for various combinations of xl and 3 for f2 is shown below: 

-6 72' 
L 

1 2 3 4 5 6 ‘7 8 9 10 

16 25 36 / 49 64 81 100 
/ 

- a 0 18 27. 38 51 66 83 

@ 
/ 

9 J-2 @ @ 4.4 57 72 

19 
/ 

22 27 / 34@@@ 

33 36' 41 
J 

Y51 54 59 

73 76 81 

99 102 107 

129 132 129 132 

163 163 

I I I I I I I 
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4 

5 

6 

7 

8 

9 

10 

Note that each diagonal corresponds to a particular value for x1+x2 = Al. 
The optimum value for f2 in each diagonal is encircled. This chart will 
be useful as soon as the graph for the third decision is found. It is shown 
below: 

G 
0 1 2 3 4 5 6 7 8 9 10 

Since it was specified that xl + x2 t x3 = 10, only one diagonal is 
needed. The procedure to find the optimum values is now straightforward. 
From the previous table it is seen that optimum decision for x3i.s x3 = 4, which 
means x1 + x2 = 6. This corresponds to a value of 40 for f3. The optimum 
values for xl‘ and x2 can now be determined by referring to the table for 
the second decision. Since xl t x2 = 6, the best value in the sixth diag- 
onal must be selected. It is 24, which corresponds to xl = 4 and x2 = 2. 
Thus, the optimum values for xl, x2, and x3 have been determined to be 
x1 = 4, x2 = -2, x3 = 4. 

The question arises: is any savings realized by using Dynamic 
Programming for this problem? In order to answer this question, the number 
of computations using Dynamic Programming will be compared to that using 
the "brute force" method. (It should be noted, however, that small problems 
do not demonstrate the beauty of Dynamic Programming as well as larger 
problems. It will be shown in Section 2.3.3.l.that some problems that are 
virtually impossible to solve by the "brute force" method become reasonable 

38 



once again due to Dynamic Programming concepts.) The number of additions 
performed in the previous problem were 66 for the second table, and 11 for 
the third table - for a total of 77 additions, The "brute force" method 
would require the calculation of S = Xl2 t 2X22 + X32 for all possible 
permutations of xl, x2, and x3 where 05 Xi5 10, + x2 t x3 = 10, 
and Xi is an integer. For this particular problem the "f brute force" 
method requires 66 cases or 132 additions. It is seen that even on this 
simple problem the savings in additions is quite significant. 

In order to compare and contrast the Dynamic Programming solution of 
this problem with the classical solution, the same problem will not be 
solved using classical techniques. First, the constraint equation is joined 
to the original problem by a Lagrange Multiplier, 

Now the partial derivatives are taken with respect to the independent 
variables and equated to zero. 

2s 
- =2x,--h =o 
a x, 

This yields 

h 
x, = - 

2 
2 

3 = 7 
A 

x3 = - 
2 

(2.2.29) 

(2.2.30a) 

(2.2.30b) 

(2.2.30~) 

(2.2.31a) 

(2.2.3lb) 

(2.2.31~) 

39 



The value of X can be found by employing the constraint equation 

2 h x Z,"X~fX3 =/O=---+-- 
2 4 2 

(2.2.32) 

Hence, 

and finally 

%, = 8 = y 
2 

%. = $ =2 

(2.2.33a) 

(22.3313) 

(2.2.33~) 

It is interesting to compare these two solutions. First, it should 
be noted that solutions obtained using the two methods on the same problem 
need not be the same. That the answer3 are identical for both methods in 
this problem result3 from the fact that the answers to the continuous 
problem happened to be integer3 and the Dynamic Programming method searched 
over all the permissible integers. Had the solution not consisted of a 
set of integers, the Dynamic Programming solution could have been forced 
to converge to the continuous solution by increasing the number of values 
employed for the variables in the process. 

On the other hand, if it is desired that the solution consist of 
integers, the continuous method would not be a very effective way of 
determining the solution. The Dynamic Progr 3mming solution, of course, 
would be constructed without modification. 
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2.2.4 auipment Replacement Problem 

The following problem is included to illustrate the use of Dynamic 
Programming in solving problems in which the variables are in a tabular 
form rather than expressed analytically. The problem was presented by 
R. E. Kalaba in a course taught at U.C.L.A. during the spring of 1962 and 
is shown in Ref. 2.2.3. 

Consider the position of the person who must decide whether to purchase 
a new machine for a factory or keep the old machine for another year. It 
is known that the profit expected from the machine in question decreases 
every year as follows: 

Age at Start of Year 

0 
1 

3” 
4 

2 
7 
8 
9 

10 

Net Profit from Machine 
During the Year 

$10,000 
9,000 
8,000 
7,000 
6,000 
5,000 
4,000 
3,000 
2,000 
1,000 
0 

Table 2.2.2 Expected Profit of Machine 

A new machine costs $10,000. It is assumed that the old machine cannot 
be sold when it is replaced, and the junk value is exactly equal to the cost 
that is necessary to dismantle it. If the machine is now 3 years old, it 
is desired to find the yearly decision of keeping or replacing the machine 
such that the profit is maximi zed for the next 15 years. 

The solution of this problem proceeds in a manner quite similar to 
previous problems. Instead of solving the specific problem for 15 years, 
the more general problem is solved for 4 years. The results of the 4 th 
year then provides information for the d+ 1 & decision. The mathematzal 
statement of the optimization problem is as follows: 
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K.&P : P(w) + cm, (cu+I) 
P&PLACE : P (0) -c - + F,-, (J) 1 

PROFf T OUQING PGZTFROM 
NEXT YEAR OF .QEhd~fr~1~42 
OPERA 7’1 ON K-1 YEARS 

The initial condition is: 

I KEEP: 0 

’ la) = mw R&PU,CE : 0 I 
=o 

(2.2.34) 

(2.2.35) 

where s(a)= the expected profit obtained during the 
next k years when the machine is cr 
years old at the start, and an optimal 
policy is used. 

P(ct!) = the expected profit obtained during one 
year of operation of a machine (Y years 
old at the start of the year. 

C = the cost of a new machine. 

The numerical soltuion begins by evaluation P(cY) . This is easily done 
from Table 2.2.2. 

P(0) = $10,000 
P(1) = 9,000 
P(2) = 8,000 
P(3) = yg 
P(4) = 
P(5) = 5:ooo 

p(6) = $ 4,000 
P(7) = 3,000 
P(8) = 2,000 
P(9) = 1,000 
P(10) = 0 

The cost of a new machine is $10,000 so 

c = $10,000 

Now a table for the one stage process will be formed using all possible 
values for a . 
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p=:-= -. _ - . _-. _ -_ .- .~.. , _ _ 

0 1 2 2 3 3 4 4 5 5 6 7 8 9 10 6 7 8 9 10 
.1_=zm7 

10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000 5,ooO 4,000 3,000 2,000 1,000 0 0 

Starting with a machine a! years old, the profit for the year will be P(ff) 
if the machine is is not replaced. If, on the other hand, the machine 
is replaced, the profit from the machine is $10,000; but it costs $10,000 
to get a new machine, so the net profit for that year is 0. Hence, the 
result for a one stage process is to keep the machine regardless of how 
old it is in order to maximize the profit for one year. 

Now a 2 stage process will be considered. Here, the question arises 
whether to keep or replace the machine at the beginning of each year for 
two years. Using the previous results, the following table for the 2 stage 
process can be constructed. 

.~ 
c- -..- i- -. 

AGE oc 0 1 2 3 4 

T(Q) 0,000 

.-.-.--I-. 

9,000 8,000 7,000 6,000 

I)ECISION K I---- K K K K ._ --~. ~-~ 
Keep 19,000 17,000 15,000 13,000 11,000 

pw _~~ ~~_._ 

Replace 9,000 9,000 9,000 9,000 9,000 c-z ,:; 1;;.- 1 I I T -= _ -..- _ _ .-_ in ~. - _ _ =.=. _-. _. --_ _~ --- -- 
A closer look at the computation of the numbers 

5 6 7 8 9 lo 

5,000 4,000 3,000 2,000 1,000 0 

K K K K K K 

in this table will clarify 
the concepts involved. For an example, consider o = 2. The decision faced 
here is to keep or replace a machine now that is to last for 2 years. If 
it is decided to keep the machine, the income from the first year is 
P(2) = $8,000. The decision for the last year has already been made on 
the 1 stage process (keep). The income from the second year is that of a 
machine 3 years old or $7,000 for a total income of $15,000 for two years. 
Now consider the "replace It decision for the beginning of the first year. 
The income from the machine for the first year is $10,000 and the cost of 
replacement is $10,000 so the profit during the first year is $0. The second 
year starts with a machine that is 1 year old, and the profit obtained is 
$9,000. The total profit for two years is thus $9,000. From Table 2.2.3 
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it is seen that (for a two stage process) a machine which is less than 5 
years old should be kept,*a machine which is more than 5 years old should 
be replaced and a machine which is exactly 5 years old can be kept or 
replaced. (In the indifferent case the machine will be kept by convention). 

Repeating this procedure for a three stage process yields the following 
table. 
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AGE a 0 1 2 3 4 5 6 7 8 9 10 

Fl (a) DECISION K K K K K K K K K K K 

F2 (a) 19,000 17,000 15,000 13,000 11,000 9,000 9,000 9,000 9,000 9,000 9,000 

DECISION K K K K K K R R R R R 

KEEP 27,000 24,000 21,000 18,000 15,000 14,000 13,000 12,000 11,000 10,000 9,000 

F3 (a) I 

REPLACE 17,000 17,000 17,000 17,000 17,000 17,000 17,000 17,000 17,000 17,000 17,000 



The optimal policy can now be found by referring to the table. Note that 
the general solution is given; that is, the problem can begin with a 
machine of any age (not just 3 years old as in the original problem). This 
generality is the result of the fact that Dynamic Programming solves a class 
of problems rather than a specific problem. For a 15 stage process, the 
correct initial decision for the problem in which the machine is 3 years 
old is found in the grid 15 ( (Y ) and (Y = 3 (marked by a. For the 
next decision, Flrc (cr), the machine is 4 years old since it was kept for 
an additional year. The correct decision for this stage is again "keepl' 
as shown by the grid marked by 0 . The third decision is to Veplace" 
as shown by the grid labeled by 0. The fourth decision is shown by @ . 
The unit that was replaced in the third decision is one year old at the 
beginning of the fourth decision so the grid to use is F 

i2 
( Q! ) and a! = 1. 

This process continues as is shown by the remaining circ ed numbers. The 
final policy for the U-stage process that starts with a unit 3 years old 
is keep, keep, replace, keep, keep, keep, keep, replace, keep, keep, keep, 
replace, keep, keep, keep. The maximum profit for this problem is seen 
to be $91,000. 

Similarly, for 15 stages, the following table results: 
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AGE I 
9 ~ 10 

F, ((~1 K R : R 

F, (a) I K I K I K K I R 

I Fa (a) I K I K I K 

I F,, (a! 1 I K I K 

FII (a.1 I K I K K5 K K K R'R R R R .a.& I I 0 
FIV (a) K IK4 K K R R R R R R R 0 
53 (a! 1 K K K K K 

e 
h&I R 1 R 1 R 1 R 1 R 1 

I F,, (a) 1 K 1 K 1 

F14 ( CY 1 K K K 1 K 1 Kc ) R R R R R R I 
I I I 

K K1 K R R R R R R 0 *I 

100,000 96,000 93,000 91,030 90,000 90,000 90,000 90,000 90,000 9Q,OOO 90,000 

c 



2.3 COMPUTATIONAL CONSIDERATIONS 

So far, the principles of Dynamic Programming have been applied to 
both discrete and continuous problems. It was shown in Section 2.2.2 
that Dynamic Progrsmming is an alternative method of solving certain 
variational problems. In fact, the use of Dynamic Programming sometimes 
enables the solution of problems that are normally very difficult, if not 
impossible, by classical techniques. It should not be assumed, however, 
that its use is free of difficulties. Dynamic Programming does indeed 
suffer from difficulties that are inherent in any scheme that discritizes 
a problem or performs a combinational search. This section discusses 
the relative advantages and disadvantages of Dynamic Programming as applied 
to both continuous and discrete problems. 
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2.3.1 MELTS 0~ mwac PR~ORAMMINO 

The classical techniques used in optimization theory are subject to 
many complications when they are applied to physical problems. These 
difficulties result from applications of the theory based on continuous, 
well-behaved functions to .problems invo1vin.g discontinuities and relation- 
ships for which there are no closed-form analytical expressions. This 
section deals with these classical techniques and discusses the relative 
merits of Dynamic Programming on these points. 

2.3.1.1 Relative Extrema 

The difficulty in trying to distinguish between relative extrema, 
absolute extrema, and inflection is well known to the calculus student 
who sets the first derivative equal to zero. This difficulty, which is a 
nuisance in functions of one variable, becomes almost unbearable for 
functions of many variables. (Such cases are encountered in the optimi- 
zation of a multi-variable problem.) The use of Dynamic Programming on 
problems such as these avoids this difficulty completely. The very nature 
of Dynamic Programming deals only with absolute maxima or minima; so far 
as the Dynamic Programming solution is concerned, other extrema do not 
even exist. 

This property of Dynamic Programming turns out to be the only salva- 
tion in the solution of multi-dimensional problems in which there are many 
extrema. 

2.3.1.2 Constraints 

Classical techniques fail to give the necessary extrema when they occur 
on a constraint point. This fact can be seen most easily by examining the 
following sketch of one variable that has an extrema on a constraint point. 
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If classical techniques were to be used to determine the extrema, the values 
of f(b), f(c), and f(d) would be obtained. That is, since 'the derivative 
at x = e is not zero, the extremum is not located with classical techni- 
ques. Such a function is quite common in practical problems such as 
control problems or economic problems where there is a very distinct limit 
to the range that a variable can have. This fact poses a problem to the 
engineer who attempts to optimize a process that includes functions of 
this sort; therefore, he must be very careful when using classical techni- 
ques. If he is aware of the possible existance of other extrema, precautiq 
measures can be taken to guarantee that the extremum which is located 
analytically, in fact, is the extremum. 

Again, the techniques of Dynamic Progrming avoid these problems 
completely. The reason for this is that all functions are represented 
discretely and the optimum values are found by a search technique over a 
set of numbers that represent the cost of a various number of policies. 
Thus, the procedure escapes the problems associated with the introduction 
of an imprecise condition by merely selecting the optimum number. 

2.3.1.3 Continuity 

The application of classical techniques on problems involving functions 
with discontinuities and with discontinuous derivatives also introduces 
difficulties. Since the tools of calculus are directed at continuous 
variations in variables, it is sometimes useful to smooth the discontinui- 
ties in physical problems so that classical techniques can be used. However, 
in some cases, the accuracy of the solution is seriously affected by such 
smoothing. Further, many functions that are ideally represented by dis- 
continuities in the variables must be handled in a special manner in the 
analytical solution. 

The techniques of Dynamic Programming also surmount these problems 
since the discrete manner in which the functions are used is not affected 
by discontinuities so long as the representations of the discontinuities 
are not ambiguous. 

2.3.2 DYNAMIC PROGRAMMING tiRSUS STRAIGRTFORWARD COMBINATIONAL, SEARCH 

The application of Dynamic Programming techniques to a problem of 
more than two dimensions usually provokes some thought on the advantages 
of Dynamic Programming over the so-called 'brute force- method of search- 
ing all of the possible combinations of decisions and selecting the best. 
Surely, the overwhelming number of computations involved appear to classify 
this approach as a near "brute forcell method even when using the techniques 
of Itynsmic Programming. If a calculation comparison is made, however, it 
will be seen that such a statement is not justified. The computational 
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savings offered by Dynamic Programming makes soluble some problems that 
are physically impossible to attempt with a straightforward combinational 
search because the exorbitant number of computations. 

In order to see the relative merits of Dynamic Programming in a 
small problem,consider the problem of finding the optimum path from point 
A to point B in the following sketch. 

Decision Points (Stages) 

The brute force method of solving this problem would be to evaluate 
the cost of each of the 20 possible paths that could be taken. Since there 
are six segments per path, there will be five additions per path or a 
total of 100 additions and one search over 100 numbers for a complete 
solution. The same problem can be solved by Dynamic Programming (see 
Section 2.2.1) by performing two additions and one comparison at each of 
the nine points where a decision was needed and one addition at the re- 
maining six points. This approach results in 24 additions and six 
comparisons as opposed to 100 additions and one search which were necessary 
with the brute force method. 

This comparison can be performed for an n stage process (the previous 
example was a six stage process). 
tions for 

The expressi2n for the number of addi- 
the Dynamic Programming approach is s+?? . The brute force 

method involves(n-r)n!/(f!)' additions. Using these expressions, the merits 
of Dynamic Programming begin to become very evident as n increases. For 
instance, the 20-stage process would require 220 additions using Dynamic 
Programming as opposed to 3,510,364 additions by the brute force method. 

2.3.3 DIFFICULTIES ENCOUNTERED IN DYNAMIC PROGRAMMING 

It should not be assumed that because Dynamic Programming overcomes 
the difficulties discussed in Section 2.2.1, that it is the answer to all 
optimization difficulties. To the contrary, many problems are created by 
its use. The following section discusses some of the difficulties encount- 
ered when Dynamic Programming is applied to multi-dimensional optimization 
problems. 
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2.3.3.1 The Curse of Dimensionalitv 

In Section 2.2.2.3 a simple guidance problem is presented. It is 
pointed out in that section that the number of computations involved was 
quite large because of the four dimensional nature of the state space. In 
general, the,number of computation points increases as an, where a is 
the number of increments in one dimension and n is the number of dimen- 
sions in the space. With the limited storage capabilities of modern 
digital computers,it is not difficult to realize that a modest multi- 
dimensional problem can exceed the capacity of the computer very easily, 
even with the methods of Dynamic Programming. This impairment does not 
prevent the solution of the problem; however, it means that more sophisti- 
cated techniques must be found in order to surmount this difficulty. 
Although this field has had several important contributions, it is still 
open for original research. 

One of the more promising techniques that can be used to overcome 
dimensionality difficulties is the method of successive approximations. 
In analysis,this method determines the solution to a problem by first 
assuming a solution. If the initial guess is not the correct solution, a 
correction is applied. The correction is determined so as to improve the 
previous guess. The process continues until it reaches a prescribed 
accuracy. 

The application of successive approximations to Dynamic Programming 
takes form as an approximation in policy space. The two important unknown 
functions of any Dynamic Programming solution are the cost function and 
the policy function. These two equations are dependent on each other, i.e., 
one can be found from the other. This relation is used to perform a 
successive approximation on the solution of the policy function by guessing 
at an initial solution and iterating to the correct solution. (This tech- 
nique is called approximation in policy space.) It should be noted that 
such a procedure sacrifices computation time for the sake of reducing 
storage requirements. 

The use of approximation in policy space will be illustrated via an 
allocation problem. Mathematically, two dimensional allocation problem 
can be stated as finding the policy that minimizes 

subject to the condition 

3 '0 

k; 20 

(2.3.1) 

(2.3.2) 

(2.3.3) 
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In order to give an appreciation for the need for more sophisticated tech- 
niques, a sample problem will be worked by the Dynamic Programming techniques 
which have been discussed. The presentation will serve two purposes: first, 
it will illustrate the use of Dynamic Programming on a multi-dimensional 
allocation problem and, second,- it will demonstrate the rapid growth of 
storage requirements as a function of the dimension of the problem. The 
method of approximation in policy space will then be discussed in order to 
illustrate the savings in storage requirements and the increase in computa- 
tion time. 

Consider the problem of minimizing the function 

(2.3.4) 

subject to the constraint that 

z, + x2 + x3 = 3 (2.3.5) 

and 

VJ + fi + $5 = 3 (2.3.6) 

Obviously, using Dynamic Programming to find a solution to this problem is 
not very efficient. The method of Lagrange multipliers is by far a more 
suitable method. However, the Dynamic Programming solution will be shobm 
for illustrative purposes. 

First, the problem i.s reduced to a series of simpler problem. 

(2.3.7) 

(2.3.8) 

(2.3.9) 
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Next, fl is evaluated for all allowed values of xl and ~1. The results 
are shown ?'.n the following table. 

2 4 5 8 13 

The second stage must not be evaluated for xl + x2 = A2 where A2 = 0, 1, 
2, 3 subject to all the possible values for y1 + y2. The following table 
shows the values of f2 for the second stage. 
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x1=0,x2=0 x1 = 0, x2 = 1 xl =1,x,=0 

y1 + y2 = B2 yl y2 f2 f2 f2 

0 0 0 @ 0 0 

0 1 1 0 0 2 

1 0 cjj 3 2 

0 12 5 5 
/ 

2 ljl ; 0 0 

2 0 4 5 5 

0 3 9 10 10 

12 0 @ @ 
3 

21 0 @ @ 

3 0 9 10 10 

0 indicates optimum value for stage 

(2 indicates redundant optimal values for different policies at 
the same stage 



Xl + 5 = 2 (A2 = 2) 5+X2=3 (A2=3.) 

x1=0, x2=2 x1=1, x2=1 x1=2, x2=0 xp, *=3 x1=1, x2=2 x1=2, x24 x1=3, x2"o 

Yl + 92 =B2 ~1 ~2 f2 f2 *2 f2 *2 f2 *2 

0 0 0 4 0 4 9 0 I:$ 01 5 0 5 10 @ :b:\ 1: 
1 

10 5 I:?! 5 10 $! :z+j 10 

0 2 8 6 8 
% 

13 9 9 13 

2 11 6 @* 6 11 @ $? 11 

2 0 8 6 8 13 9 9 13 

i 0 3; 13 11 13 18 14 14 18 

1 
21 / 

9 0 9 14 0 1 $3 14 
3 

2 1 9 0 9 14 @ 53 14 

3 0, 13 11 13 18 14 14 18 / 

Q optimal value for problem 



So far, the principle of optimality has not been employed. This 
principle is introduced in the evaluation of the third stage since the 
optimal values from the second stage must be used. These values are 
determined by finding the minimum values of f2 within a particular A2 
classification for a particular B2. In other words, the use of the optimal 
value theorem for the third stage requires the knowledge of the optimal 
value of f2 for various values of xl + x2 as in previous problems. This 
information must be known for various values of yl + y2 because the process 
is attempting to maximize over two variables. The number of cases that 
must be examined for the third stage is relatively small since it is no. 
longer required to investigate A < 3 and B < 3. Instead, only.cases for 
A = 3 and B = 3 must be considered. The computation results for the third 
stage are shown below. 

The optimal combination of the Xi’s and Yi’S is now determined. From 
the previous table, it is seen that the optimal policy for the third 
decision is y3 = 1 and x3 = 1 and an optimal value function of 6 results 
for the entire process. This selection restricts the choice of xl, x2, 
y1 and y2 to the cases where yl + y2 = 2 and xl + x2 = 2 and focuses 
attention on nine numbers which satis,fy these constraints. The optimal 
value of these numbers has already been selected; it is 4 and is marked 
with an asterisk. The corresponding values for xl, x2, yl and y2 are 

Y1 = 1 
Y2 = 1 
x1 =l 
x2 = 1 

The total solution, including the optimal value of the final result, is 
now known. It is comforting to know that this result agrees with answers 
obtained by the use of Lagrange multipliers and intuitive results. 

The same problem will nov be solved using the method of approximation 
in policy space. This method starts by assuming a solution for the policy 
function (yi). The next step then uses the conventional techniques of 
Dynami.c Programming to find the sequence of (Xi) that minimizes f, assuming 
the previously mentioned Yi'S. The techniques of Dynamic Programming are 
again employed, now using the sequence (xi) and finding the sequence (yi) 
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that minimizes f. This interchange of the roles QfXi and yi continues 
until the change in the value of f reaches some predetermined value (just 
as a convergent series is truncated after higher order terms are no longer 
useful to the accuracy desired). 

It is seen that the approximation in policy space method sacrifices 
computation time for storage requirements. This trade-off enables multi- 
dimensional problems to be solved even though their core storage requirements 
far exceed current memory capabilities when the straight forward Dynamic 
Programming approach is used. Hence, the increase in the computation time 
is a small price to pay the difference between a solution and insoluble 
problem. 

Another method of overcoming the core storage requirements of the 
computer is to take advantage of the one stage nature of the solution by 
the use of blocks of logic and thus avoid storing any unnecessary data. 
This is done by constructing a logical flow chart that is used repetitively 
by incrementing index numbers for subsequent stages. Also, during the 
search procedure of the optimal value for a particular state, many unnecessary 
numbers can be immediately omitted by performing a comparison as soon as 
the number is computed. If it is the best value so far, it is retained. 
If it is not the best so far, it is immediately omitted. Thus many core 
locations can be saved as opposed to a maximum search over a section of 
the core memory. Still, it must be remembered that two pi.eces of infor- 
mation must be retained for each decision point. They are the optimal 
value at that point and the optimal decision at that point. The following 
sketch shows how a typical allocation problem would be formulated by using 
a flow chart and an immediate search procedure in order to conserve storage 
requirements. (Illustration on following page.) 

58 



Initialize A = Ai for fii~ 
1 

Initialize optimal value function 
(set equal to* W) 

I 
Initialize %k 

"k(A) = 0 
t 

Compute 
gk (+I + fk-1 (A - +) 

f, 0 = 
t 

Is new computation better than 
no previous computation? 

yes 

%k that acquired it 

1 Increment allocation of Xk 

1 %k+ Al--k 
1 I 

Store optimal values for the 
particular xk 

1 
Increment resources 
Ai + a2 - Ai+l 

Resources within 

Record best values of fk (Ai) and 
the %k (Ai) that yields this Value 

1 
Increment stage index 

K+l-K 

IK 

Yes 
Y 

stop 
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2.3.3.2 Stability and Sensitivity 

It was previously noted that the Dynamic Programming approach solves 
a family of problems rather than a specific problem. Although this may 
appear to be wasteful at first, a closer evaluation would point out some 
definite advantages of this type of solution. The construction of mathe- 
matical models to represent physical phenomenon frequently involve 
approximations and uncertainties and hence the parameters of the models are 
not exactly known. It is, therefore, desirable to conduct studies for a 
variety of parameter values in order to determine the sensitivity of the 
results to these parameter changes. The uncertainties of the solution can 
then be evaluated. These solutions are in effect families of solutions 
and are obtained from Dynamic Programming applications, in many cases with- 
out extra effort beyond that required for a specific problem. 

A precautionary note on the approximation of functions is in order 
at this point because of stability considerations. A very popular techni- 
que in many analyses involves the approximations of discrete functions by 
continuous functions or vice versa depending on the demands of the 
analytical tools being used. In many cases, such approximations are per- 
fectly valid and the results are acceptable. In other cases, care must be 
taken to insure that the small differences between the actual function and 
its approximation do not introduce unacceptable variations in the solution. 
In general there are no stability theori.es available for Dynamic Programming 
and one must experiment with a particular problem to determine its peculiar- 
ities. 
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2.4 LIMITING PROCESS IN DYNAMIC PROGRAMMING 

The previous sections have delt exclusively with the computational 
aspects of Dynamic Programing and have shown how the Principle of Optima- 
lity can be used to systematize the search procedure for finding an optimal 
decision sequence. As mentioned in Section 2.1, Dynamic Programming is 
also a valuable theoretical tool in that it can be used to develop additional 
properties of the optimal decision sequence. For example, it is well known 
that the optimal solution for the problem of Lagrange (Section 2.2.2) must 
satisfy the Euler-Lagrange equation. This differential equation, as well 
as other conditions resulting from either an application of the classical 
Calculus of Variations or the Pontryagin Maximum Principle, can also be 
developed through Dynamic Programming. 

To develop these additional properties, the multi-stage decision 
process must be considered in the limit as the separation between neigh- 
boring states and decisions go to zero (i.e., as the process becomes continuous). 
That is, the problem is first discretized and a finite number of states and 
decisions considered just as in the computational approach of the previous 
sections. The Principle of Optimality is then used to develop a recursive 
equation by which the numerical values of the optimal decision sequence 
are computed. (Th is equation was not given an explicit statement in the 
previous sections since it was reasonably obvious there how the Principle 
of Optimality was to be used in the search process.) By considering the 
discretized process in the limit (i.e., allowing it to become a continuous 
process again), the recursive equation which governs the search procedure 
in the discrete case becomes a first-order , partial differential equation. 
From this partial differential equation, many additional properties of the 
optimal decision sequence can be developed. 

It should be mentioned that in some cases the limiting process outlined 
does not exist and the passage to the limit leads to an erroneous result. 
While this situation does occur in physically meaningful problems and, there- 
fore, cannot be classed as pathological, it occurs infrequently enough as 
to cause little concern. Some examples of this phenomenon will be given 
later on. 

2.4.1 Recursive Equation for the Problem of Lagrange 

Consider the one-dimensional Lagrange problem of minimizing the 
integral 

(2.4.1) 
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and the 
to the 

Let the lower limit of integration I&, $) be the point (O,O) 
upper limit be the point (/0,/O) . As 
right, the problem consists of 

illus.t;ated in the graph 

selecting from all curves y(x) 
connecting the points (0,O) and 
t/o, /o) , that one curve for 

which the integralJ in Eq. (2.4.1) 
is a minimum. 

' Sketch (2.LI.# 
% 

Consider the discrete form of the problem with the integral in Eq. 
(2.4.1) replaced by the summation 

and with the grid selected, as 
shown to the right, so that 
AZ=/ . Now, let R(&,,y,) = R(O,O) 
denote the minimum value of the 
summation in (2.4.2); that is 

9 

I P 4 6 tl IO 
Sketch (2.4.2) 

IQ (49, $0 1 = l&O, 0) 

The arguments of R, x!, and 
which is the point (o,o) . 
the appropriate slope g'at 
variable is the slope y'), 

= M/N c f(x. ( ) jc (Xi 1 ) j/ Yqhlx (2.4.2) 
i=O 

P indicate the starting point of the curve 
Since the minimization is achieved by selecting 
each state of the process (that is, the decision 
Eq. (2.4.2) is sometimes written 

Let a(: denote the slope on the section of the curve from ,I$ to 
%,(,I? = %,, *AX] . Theny, -y/r,, is given by 

f(X) =fi =fi +$/Ax (2.4.4) 

with 
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Using this notation, Eq. (2.4.3) can be rewritten as 

Rho, yo’ = M/y 1 
Y f(;u,, y. , y;)AX +g ~(.q,~~x4~J, f(;~lii;o~,(2-4-6) 

I..& Q(z,,, fil b 
L” I 

e the minimum value of the summation 
where the arguments X, and jf, , 

xi, j&d, f/‘(&i))AX 
again denote the starti&point of the 

(2.4.7) 

Note from the grid size in Sketch (2.4.2) and Eqs. (2.4.4) to (2.4.5) that 
Y,=/ {y,-%+A%-o+/]but that Y, can take any value from 0 to 10. Suppose 

the optimal curve connecting the points(x,,#,) and (~$,)r/) has been cal- 
culated and the functionR(z,,y,) evaluated for&=/ and # =o,/,z,...,/o. Then, 
using the Principle of Optimality and the &rid (which is partially shown 
to the right) allows the optimal- 
solution to the original problem 
(namely the value of R(xor yo) 
to be located. 

Again letting 

fi =+ ffi'dp 
and 

30 

2.6 

I.0 

0' 

it follows that Rt~~,p) is given by 
P . \ 

Sketch (2.4.3) 

(2.4.8) 

That is, the slopeb(,/ at the point (X,,f,/,, would be selected so that the 
sum of the two terms !?'cr,,y,, $)A)L + RJZ, ,p) is a minimum where $ =Y,+$'A%. 
This is exactly the computational procedure which was followed in the example 
problems of the preceding sections. 

Equation (2.4.8) 
that the operation miy 

can be developed directly from Eq. (2.4.6) by noting 
means the minimization is to be performed over all 

slopes & with i running from Oto 9. Thus, 
M/A/ 5 M/A/ 

Y' y:* (i-0,9) 

Now, substituting this expression into (2.4.6) provides 
1 9 
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But 

(2.4.10) 

since the function on which the M/U operator is operating is not depended 
ong:.'(i= J,9) . Also, from the definition of RI%,,fl) gri.ven in (2>4.7) 

0 

where $ I= $3 + pw 

Thus, substituting (2.4.10) and 2.4.11) into (2.4.9) provides the desired 
result 

Again, it is io be lmphasized that this equation is simply the mathematical 
statement for the search procedure as suggested by the Principle of Optimality. 

To develop the solution of the problem using Eq. (2.4.12), the values 
ofRry,,$){$=$ +f;'x] must be calculated. However, these quantities 6-1 
be calculated in precisely the same manner as Rt;r,,$) ; that is, R(%,,y,) 
must, according to the Principle of Optimality, satisfy a recursive equation 
of the form 

~2 (z, , y,) = Mm 
i-4' 

f f Y,, 1, , p:’ *R(X,, jy *y’dX) 
I 

(2.4.13) 

and similarly, for ail poiyts (yi,s)in the grid, 

mus Eq. (2.4.14) repr&ents a computation algorithm for finding the optimal 
decision sequence. Note that all curves must terminate at the point(x 
the upper limit of integration, 

,+) ' 
which for the particular problem here is 

the point (/0,/O) . This condition can be expressed mathematically as 
5' s- 

Q%o 9 Q =RkY+++g = m+N/p, ‘fh, y, pc/rr =o (2.4.15) 

F' 
2.4.2 Recursive Equation in Limiting Form 

In this section the recursive equation of (2.4.14) will be considered 
in the limit as Ax+0 . It will be shown that under certain relatively 
unrestrictive assumptions, the limiting form of this equation becomes a 
first-order, partial differential equation. 
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Again, the problem under consideration is that of minimizing the integral 

J=[~~y,y.)u!~ (2.4.16) 

as in the preceding section, let ' oP(%~P enote the minimum value of this 
integral. Thus . 

4' p 
.@c&& = hf/N f &alp f'",pjm% 

or alternately 

R(;r,, $1 = My/ 
41 f'r 

f(X,f,ly') a'% (2.4.17) 

where the 
y.+ 

v 'under the MN symbol denotes the value of the decision variable 
y' on the interval(;u,d;rL+); that is 

y'=jyY" ; 4 4 S"+j (2.4.18) 

Now, note that R(x*,, 
integral- J if 

) is simply a number; namely, the minimum value of 
, with t e arguments (x,,yO) denoting the point at which the 

integration begins. 

Proceeding as in the discrete case, let &x,y) denote the minimum 
value of the same integral but with the integration beginning at the point 
(%,f) : that is 

+fg Yf 

IQ kc, y' = M/AI 

f ' 
f 

v 
+-(x,y,f')d~ ; $4' ={ yw; x L 5 4 zr,j(2.4.19) 

Again, R is simply a number but a number which changes in value as the 
initial point of integratiop (the argument of R ) changes. Now 

X+AX, j'+*jf 4-1 k 

/ 

Xf ’ Yf 
KY, p f’) d% = 

J 

*f)L 

‘,% ffx, fl f/a’% + / fly yIJds 
Y tA%,jftd 

Xf, %f 
(2.4.20) 

= f (x, p 
1 

‘)A;c +O(AX) + 
whereO(A%)denotes terms of or er A)c ; that 

/ f(x 1 y, y ‘U% 
is,XtAx*~'A~ 

Substituting (2.4.20) into (2.4.19) provides 
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Now,. noting that the second MIN operator on the right does not operate 
on ftx, y, p’)Ax, it follows that 

i 1 

This equation is essentially the same as the recursive relationship of 
Eq. (2.4.14). However, it can be reduced to a simpler form under the 
assumption that the second derivatives ofk?(w,y) are bounded; that is 

aZR 

I I s 
da8 

(2.4.22) 

This assumption allows for the expansion 
aR 

R(Z+AX, ffA@ = &,X,y! + jy A% f CR A 
JR JR ay 

f +O(&) 

=R(z,y)* gJ%+ay ‘A,f:tO(dd (2.4.23) 

since Ay = y'dx . Substituting (2.4.23) ! into (2.4.21), yields 

Noting that the MIN operator does not operate on R[x,~) and factoring 
out AX, this expression becomes 

Finally, taking the limit asAXdOprovides the desired result 

(2.4.24) 

Equation (2.4.24) is the continuous analog of the recursive computational 
algorithm of Eq. (2.4.14). Since it is a first-order (non-classical) partial 
differential equation, one boundary condition must be specified. This 
boundary condition is the same as that which was applied in the discrete 
case; namely, 

R '+ ' %f (2.4.25) 
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The combined solution of (2.4.24) and (2.4.25) yieldsR(%,$) which is the 
minimum value of the integral starting at the point (y,$. Evaluating R 
at the point(z&,y,) provides the solution to the problem. 

Two questions arise at this point. First, how are Eqs. (2.2.211) and 
(2.4.25) solved; and secondly, once the function/?{%, ) is known, how is 
the optimal curvev(x) determined? Both questions ar If interrelated and 
can be answered by putting the partial differential equation in (2.lc.24) 
in a more usable form. 

Note that the minimizationjn Eq. (2.4.24) is a problem in maxima - 
minima theory; that is, the slope r/'(,y)is to be selected so that the quantity 
![z,y,y'ltj$+fly' is a minimum. 

d 
Assuming that $ is differentiable and 

noting that does not depend on 8' , it follows that 

or 
af aR 0 -jj-/+ ay= 

Thus, Eq. (2.4.24) is equivalent to the two equations 

(2.4.26) 

(2.4.27) 

which, when combined, lead to a classical-partial differential equation in 
the independent variables % and Y {f/' is eliminated by Eq. (2.4.26) ] and 
the dependent variable R(r,y, . This equation can be solved either ana- 
lytically or numerically, and then Eq. (2.4.26) used to determj.ne the 
optimal decision sequence Y'(Z) for (X0'-z"X/). 

2.4.3 An Example Problem 

The problem of minimizing the integral 

has been shown to be equivalent to solving the partial differential equations 

(2.4.28) 
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where v 'is determined from 
af aR -t-z 0 (2.4.29) -. v du 

and with the boundary condition. 

R%p $ff )=O (2.4.30) 

To illustrate this equivalence, consider 
treated in Section 2.2.2.1 where 

the shortest distance problem 

chz, jc , y” = w (2.4.31) 

In this case, Eqs. (2.4.28) and (2.4.29) become 

By straight-forward that the function 
satisfying these equations and the boundary condition of (2.4.30) is given 
by 

with 

At the initial point 

(2.4.32) 

(2.4.34) 

while at the succeeding point along the solution, 

In a similar fashion, it can be shown that for each succeeding point along 
the optimal solution emanating from (w,, %a> 

fc’(z) = p.. ) 
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thus, verifying that the solution is a straight line with slope given by 
Eq. (2.4.34). 

2.4.4 Additional Properties of the Optimal Solution 

The solution to the problem of minimizing the integral 

(2.4.35) 

is usually developed by means of the Calculus of Variations with the 
development consisting of the establishment of certain necessary conditions 
which the optimal solution must satisfy. In this section, it will be shown 
that four of these necessary conditions resulting from an application of 
the Calculus of Variations can also be derived through Dynamic Programming. 

by 
In the previous sections it was shown that the function R(x,f)defined 

R(Z,y) = hh’ f 
% fi 
+-tz,qc,y*)d$ 

Y’ ‘9% 
(2.4.36) 

satisfies the partial differential equation 

flx,y,y’) + g f 
akz 

’ = 0 (2.4.3-i’) 

Setting the first derivative with respect to .# ' to zero in this equation 
provides the additional condition 

Also, if y' is to minimize the bracketed quantity in (2.4.37), then the 
second derivative 
or equal to zero. 

of this quantity with respect to f" must be greater than 
Hence the condition, 

(2.4.39) 

must be satisfied along the optimai solution. This condition is referred 

(2.4.38) 

to as the Legendre condition in the Calculus of Variations. 

A slightly stronger condition than that in (2.4.39) can be developed 
by letting u& denote the optimal solution and Y’ denote any other 
solution. Then from (2.4.37) 

aR aR , 
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NOW, combining these two expressions provides 

/lx+, Y’, - f(x, 7, $-- ) + 
8R 
q = 0 (2.4.40) 

But from Equation (2.4.38) 
aR dR af -= - df ajr (xPf) = - 27 (x9 y 5 f6t) 

Thus, substituting this equation into (2.4.401, yields the Weierstrass 
condition of the Calculus of Variations. 

f 4 jf9 (2.4.41) 

When the slope Y' in (2.4.37) is computed according to the optimiz- 
ing condition of (2.4.38) it follows that 

(2.4.42) 

Note, that t/as developed from (2.4.38) will be a function of JL and 
At points (X,#) for which v* 
exist). Eqs. (2.4.42) an 1 

'C%,@is differentiable, (i.e;, 9 and F' 
2.4.38) can be combined to yie &if a thi& nec- 

essary condition. Taking the total derivative of (2.4.38) with respect 
to EL and the partial derivative of (2.4.42) with respect to f yields 

(2.4.43) 

which is the Euler-Lagrange equation; an equation which must be satisfied 
at points (r,Y ) where y'is differentiable. Across discontinuities in y' , 
the required derivatives do not exist, and (2.4.43) does not hold. 
at such pointsRU,v) is continuous and so is$ 

However, 
according to the original 

assumptions of (2.4.22). Thus, from Eq. (2.4.38) -5 
3 

, is also continuous 
and the Weierstrass-Erdman corner condition 

(2.4.43~) 

must hold. 
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Collecting the results of this section, the curve x&which minimizes 
the integral 

+, Yf 

J= 
/ 

must satisfy ye- ye 

(1) Euler-Lagrange Equation 
d G’f af 

-4-l 
--= 

02 af a? 0 (2.4.44~) 

(2) Weierstrass-Erdman Corner Condition 

(2.4.44~) 

(3) Weierstrass Condition 

r(x,y, Y’) - f(x,y,y)- (Y’y’) g, (x, y, y’l 2, o :2.4.44c) 

(4) Legendre Condition 
a2f 
- kjf,g’) 20 ay/’ (2.4.44~) 

In addition to these four conditions, a fifth necessary condition, 
the classical Jacobi condition, can also be developed by means of Dynamic 
Programming. Since this condition is rather difficult to apply and fre- 
quently does not hold in optimal control problems, it will not be developed 
here. The interested reader should consult Reference (2.4.1), page 103. 

2.4-5 Lagrange Problem with Variable End Points 

In the preceeding sections the problem of minimizing the integral 

was considered where the limits of integration,(&,,$) and (x4,f6) were fi,zd. 
In this section a minor variation on this problem will be considered in 
which the upper limit of integration is not fixed precisely, but is required 
to lie in the curve 

p (X,f) = jz ‘xf,fp=o (2.4.45A) 
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Y 
The situation is pictured to 
the right. Note that the 
minimization of the integral 
involves both the selection of 
the optimal curvey(tx) and 
the optimal terminal point 

‘5 ’ Vf ) along the curve 
pW+=O* As in the fixed 
end p int case, let x 

Q(X ,y) = M/A/ 
s 

*/.v Yf 
Sketch (2.4.4) 

Y’ x:)y 
where the terminal point(+,#f ) lies on the curve of Eq. (2.4.45A). 
Following the procedure of Section (2.4.2), it can again be shown tnatR(x,y) 
satisfies the partial differential equation 

(2.4.45B) 

However, the boundary condition on /? is slightly different in this case. 

Since R(%,y) is the minimum value of the integral starting from the 
point CZ:,~) and terminating on the curve #x,5/)=0, it follows that R(z,y) 
is zero for any (x,y) satisfying g(;xr,$)=O ; that is, the value of the 
integral is zero since both limits of integration are the same. Hence, the 
boundary condition for Eq. (2.4.45B) is 

(2.4.46) 

This condition can be put in an alternate form if the equation. 
can be solved fory/L'.e-, $ # 0 / . In this case 

pcs,y, = 0 

(2.4.47) 

and Eq. (2.4.46) becomes 

RC%,y) = 0 ON L/ = Rh, 

or 

(2.4.48) 

(2.4.49) 
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Alternately, for two neighboring points along the, curve 
sayxsndx-t6x 

where 

Thus, dividing by 6% and taking the limit provides 

But from (2.4.47) 

(2.4.50) 
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Hence, the boundary condition 

OAI f’“,jd =o (2.4.51) 

results. Setting a_R / y 
du 

=,& an: substituting into (2.4.51) provides 
If JR 

-- 

z 

/& 22 =o 

~~=O ON p,jd =o (2.4.52) 
-- 

av Y which indicates that the gradient of@,x,y) and the gradient of ~~x,Y/I 
are co-linear along the curve t(x,~j=O. 

Eqs. (2.4.46), (2.4.49), (2.4.51) and (2.4.52) are different but 
equivalent representations of the boundary condition that theg function 
must satisfy when the terminal point is required to lie on the curve 
ptx,p=o * From this boundary condition the transversality condition 
which the Calculus of Variations requires can be derived. This is shown 
next. 

From Eq. (2.4.45B) it follows that the optimal slope must satisfy 
af sle 
T +y 

=O (2.4.53) 

at all points (x,t/) including the terminal point. Using this equation, 
Eq. (2.4.45B) becomes 

/=o (2.4.54) 

and must also hold at every point including the terminal point. Combining 
Eqs. (2.4.51), (2.4.53) and (2.4.54) provides 

which is the transversality condition which the optimal solu%ion must satisfy; 
that is, Eq. (2.4.55) p s ecifies which of the points along 
point for which the integral J is a minimum. 

pl.~,#)=Ois the 
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2.4.6 N-Dimensional Lagrange Problem 

The concepts of Sections (2.4.1) to (2.4.5) which have been developed 
in connection with minimizing the integral 

X,9 fi 
J =f f(x, y, y”dy 

%9)1. 

where y is a SCalar (l-dimensiona variable, can be extended to the case 
in which y is an n dimensional vector 

(2.4.56) 

(2.4.58) 

Then, following a procedure identical to that employed in Eqs. (2.4.20) to 
(2.4.24) but with the scalar t( replaced by the vector y as indicated in 
Eq. (2.4.56), it can be shown that'RcX,y) satisfies the equation 

(2.4.60) 

where superscript T denotes the transpose and a,R and 
du if 

' are the vectors 

(2.4.61) 
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The boundary condition to be satisfied by R(x,yj will in all cases 
take the form 

R(X/, Q-0 (2.4.62A) 

whether the point (%+-,g ) is fixed or allowed to vary on some surface in 
the Ix, 

f 
) space. In tile latter case, however, Eq. (2.4.62A) has several 

alterna e representations similar to those developed for the l-dimensional 
problem "e.g. Eqs. (2.4.46) to (2.4.52) . For example, if the terminal 
Point (xr 9gf 1 is required to lie in the surface specified by the icon- 
straint equations 

(2.4.62~) 

the boundary condition ofp as given in (2.4.62A) can also be mitten as 

R(z,@=O OA/ G(z,yI=03jg,.(~,y)=~ ; i=l,mj (2.4.6yi) 

or analogous to Eq. (2.4.52), as 

(2.4.63~) 
where// is the m dimensional vector 

(2.4.64) 

Thus, by combining (2.4.63B) with (2.4.60) and using the optimization con- 
dition inherent in (2.4.60), that 

af JR = 0 -+- (2.4.65) 

a$( afi 
i L’= 1, n 

the transversality conditions of the Calculus of Variations, corresponding 
to the terminal constraints of Eq. (2.4.62B), can be developed. These 

76 



conditions, wh?ich are essentially thew dimensional equivalent of the one- 
dimensional transversality condition of Eq. (2.4.55), take the form 

One final remark regarding the n-dimensional Lagrange problem is 

= o . (2.4.66) 

appropriate. 
lem, 

In Section (2.4.4) it was shown that in the l-dimensional prob- 
the partial differential equation governing the function R could 

be used to develop some of the necessary conditions usually developed by 
means of the Calculus of Variations. The same thing can be done in the 
n-dimensional case. The vector form of the necessary conditions in the case 
which corresponds to Eqs. (2.4.44A) to 2.4.44D),is as fol.lows: 

(1) Euler-Lagrange Equations 
da- Jf -- 

( ) 
- -= 

d% a$ dfi* 
0 ; L’=/,n (2.4.67~) 

(2) Weierstrass-Erdman Corner Condition 

Lf lx 
$4 

% 9 y, f'+'! = a~. J y,j/"' ; i=/,n 
1 

(2.4.6m) 

(3) Weierstrass Condition 

f&y, Y:, - fcx, .+ y? -2 (J&j) $ ‘Y,L& zo (2.4.67~) 
L” / 

(2.4.67~) 

That is, the matrix <: 
9 

must be positive semi-definite. 
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2.4.7. Discussion of the Probltsi of Lagrange 

In the preceeding five sections, it has been shown that the computational 
algorithm inherent in the Principle of Optimality is, under certain relatively 
unrestrictive assumptions [see Eq. (2.4.221, equivalent to a first-order, 
partial differential equation. This partial equation goes by a variety 
of names, one of which is the llBellman" equation. The solution to the 
original problem of minimizing an integral is easily generated once the 
solution to the Bellman equation is known. It is to be emphasized that 
the source of this equation is the computational algorithm, that is, the 
equation is simply the limiting statement for how the computation is to be 
carried out. 

It is a relatively rare case in which the Bellman equation can be solved 
in closed form, and the optimal solution to the problem developed analytically. 
In most cases, however, numerical procedures must be employed. The first 
of two available procedures consists of discretizing the problem and repre- 
senting the partial differential equation as a set of recursive algebraic 
equations. This approach is just the reverse of the limiting procedure 
carried out in Section (2.4.2) where the recursive equation (2.4.15)~as 
shown to be equivalent to the partial equation of (2.4.24). Hence, in this 
lkhnique the continuous equation (2.4.24) is apprortiated by the discrete 
set in (2.4.15) and the solution to (2.4.15) is generated by using the same 
search techniques that were used in the sample problems of Section (2.2) and 
(2.3). Thus, the computational process implicit in Dynamic Programming is 
simply a method for solving a first-order, partial differential equation. 

A second pmCedUre for generating a numerical solution for the Bellman 
equation consists of integrating a set of ordinary differential equations 
which corresponds to the characteristic directions associated with the 
partial differential equaULon. For example, the solution to the partial 
equation 

for S(yJ) with the boundary condition 

(2.4.68) 

(2.4.69) 

involves the introduction of the variable t where 
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(2.4.70) 

Substituting (2.4.70) into (2.4.68) provides 

as d% as d2 = ds = 0 -f- 
z dt a# Lft z (2.4.71) 

Hence, along the characteristic directions in Eq. 
points (%, , + 1 

(2.4.701, which emanate from 
satisfying 8 ( ;I, ,& ) = 0, S( x, ) = C( &, ,fO 1. This 

fact is derived from Eq. (2.4.69) and (2.4.71). Y 
Eqs. (2.4.70) for all ( X0, & 

There ore, integration of 

tions S ( x 
'Y 

) for which Y$ ( %O,fO) = 0 yields the solu- 
) to Eq. (2.4.68). If, in addition, x is monotonic and 

$,(A )fOs 
2 

the characteristic direction in (2.4.70) can be represented 
more si ply by 

(2.4.72) 

A similar procedure to that outlined in the preceding paragraph can be 
used to solve the Bellman Equation, which for the l-dimensional Lagrange 
problem is equivalent to the two equations 

JR f(z,f/,j/)+ z + y-Q y’=O (2.4.73) 

(2.4.74) 

The characteristics for this set of nonlinear equations are somewhat more 
difficult to develop than those for the linear example in Eq. (2.4.68). 
However, by referring to any standard text on partial differential equations 

see for example, Ref. (2.4.2), pages 61 to 66 it can be shown that the 
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characteristics associated with Eqs. (2.4.73) and (2.4.74) are 

The meaning of the first two equations is obvious. They are simply a restatement 
of the definitions of 4’ and Rtx!, ). 
with Eq. (2.4.74), f 

The last equation, when coupled 
reduced to the Eu er-Lagrange equation 

(2.4.75) 

(2.4.76) 

(2.4.77) 

(2.4.78) 

(2.4.79) 

Equation (2.4.77) is also equivalent to the Euler-Lagrange equation. This 
equivalence can be shown by differentiating (2.4.73) with respect to x 
and using (2.4.74). Thus, the characteristic directions associated with 
the Bellman equation are determined by solving the Euler-Lagrange equation. 
Since the value of R at the point (&,,fO ).and the associated curve y (x) 
(i.e., the curve emanting from the point (r,,p )) is of primary interest, 
it is only necessary to solve for one characteristic; namely, that one 
starting at ( 7L,,y0 ). Thus, the solution to the problem of minimizing the 
integral 

can be achieved by integrating Eq. (2.4.79) to determine the optimum curve 
y(x), and then substituting this value back into (2.4.80) to evaluate J. 
This is the normal procedure and is followed in the Calculus of Variations. 
It should be mentioned that the solution to the Euler-Lagrange equation 
cannot be accomplished directly due to the two-point boundary nature of the 
problem (i.e., curve y(x) must connect the two points (zr,,+, ) and (&, ~ ) 
while the determination of this curve by numerical integration of Fq. ( Iii .4.79) 
requires a knowledge of the slope $f foL* 1 . Hence, it may be more 
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efficient to develop the solution by means of the first numerical technique 
of discretizing the problem and solving a set of recursive algebraic 
equations. 

From this discussion, it is seen that the Bellman equation of Dynamic Prograxxning 
and the Euler-Lagrange equation of the Calculus of Variations are equivalent 
approaches to the problem of Lagrange and that the equivalence exists on 
both the theoretical and computational levels. The other necessary conditions 
(e.g., Weierstrass, Legendre, etc.), generally enter the optimization problem 
in a less direct manner, in that once a solution has been developed, they 
serve to test if the solution is indeed minimizing. The fact that these 
conditions can be developed from the Bellman Equation lends a degree of 
completeness to the area of optimization theory. 
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2.4.8 The Problem of Bolza 

The preceding sections have delt with the Dynamic Programming formulation 
of the problem of Lagrange. In this section the Bolza Problem will be 
considered, since optimal trajectory and control problems are usually cast 
in this form. The Bellman equation for this case will be-developed and 
some solutions presented. Also, some comparisons and parallels will be 
drawn between the Dynamic Programming approach and the Pontryagin Maximum 
Principle (Ref. 2.4.3). 

The problem of Bolza is usually stated in the following form: given 
the dynamical system 

ii = J(%,Lo ; L’=/,R (2.4.81A) 

or in the vector notation 

i= f(X) u) (2.4.81~) 

(2.4.82) 

where the state x is a n-dimensional vector, 

and the control u is a r-dimensional vector, 

(2.4.83) 

which is required to lie in some closed set u in the r-dimensional control 
space; determine the control history u(t) for which the functional 

J =s” $ 
4 

(x,u)dt +$(x~,$) = minimum 

is minimized subject to the terminal constraints 

(2.4.84) 

(2.4.85) 
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where the final time tf may or may not be specified. The initial state is 
assumed specified with 

AT t=i, (2.4.86) 

If #l%f, $1 is zero in Eq. (2.4.84) the Problem of Bolza reduces to the 
problem of Lagrange. If k(x,u) is zero the Mayer problem results. The 
type of physical situation which is implied by such a problem is illustrated 
in the following two examples. 

Example (1) - Simple Guidance Problem 

Consider the problem of maneuvering a 
rocket over a flat, airless earth 
which was treated in Section 
(2.2.2.3). The equation of motion in 
this case becomes 

f 

I 
Sketch (2.4.5) 

(2.4.88) 

(2.4.89) 

where x and y represent the horizontal and vertical position, m the 
mass, 1/ the exhaust velocity (a constant), and ul and u2 are control 
variables denoting the throttle setting and steering angle. Since the 
thrust varies between zero and some maximum value, Tmax, the throttle 
setting ul must satisfy the inequality 

0 LU, L-/ (2.4.90) 
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The initial position, velocity and mass are specified by 

and at the terminal 
are specified by 

point, the position vector and the velocity magnitude 

(2.4.9OB) 

(2.4.91) 

where the final time itself, t is not soecified. The problem is to determine 
the control u and u such thae'the fuel kxpended during the maneuver is a 
minimum. Sin&e the ?uel is equal to the difference between the initial 
and terminal values for the mass, and since m is specified, minimizing 
the fuel is equivalent to minimizing the nega%ve value of the final mass 
with 

p= -mf = minimum (2.4.92) 

To put this problem in the Bolza format of Eqs. (2.4.81) to (2.4.56) 
define the new variables xl, x2, 3, x4, and x5 by 

The state equations then beome 

2, = %= 

x2 * z4 
XJ = CA, q - 44uuz -p 

x5 

L, 4 
(2.4.93) 

i6. =--F- 
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and the terminal condition 

with the initial condition 

(2.4.94) 

The admissible control set7/ is given by 

QC lfw 0 L u, 4 I 

O2 arbitrary 

The optimizing criterion is 

Note that the integrand in I@. (2.4.84) (i.e., the function ~(x,u)) is 
identically zero for this problem. 

Example (2) - Attitude Control Problem 

Consider the simple single-axis 
attitude control system represented 
by the equation 

Sketch (2.4.6) 

(2.1+.95A) 

(2.4.95B) 

(2.4.96) 

(2.4.97) 

85 



where I is the moment of inertia, F is the jet force and ..! is the 
lever arm. Letting 

Br 
%‘L 

the state equations become 

% = x2 

. 
x2 =u 

(2.4.98A) 

It is assumed, in addition, that the magnitude of the jet force F can vary 
from zero to a sufficiently large value so that essentially no constraint 
on the central action need be considered. Hence, the admissible control 
set U will be taken as the entire control space. The angular position 
and rate are specified initially with 

(2.4.99) 

and no terminal constraints are imposed (but, the final time, tf, is specified). 
The control action u is to be selected so that the integral 

(2.4.100) 

This function corresponds physically to keeping a combined measure of both 
the fuel and the angular displacement and rate errors as small as possible. 

In subsequent sections both the above problem and the simple guidance 
problem will be analyzed using Dynamic Programming. Next, however, the 
partial differential equation, analogous to the Bellman equation for the 
problem of Bolza, will be developed. 
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2.4.9 Bellman Equation for the Bolza Problem 

In this section a procedure very similar to that in Sections (2.4.1) 
and (2.4.2) will be followed. It will be shown, to begin with, that the 
Principle of Optimality, when applied to the problem of Bolza, is equivalent 
to a set of algebraic recursive equations. Next, it will be shown that 
under relatively unrestrictive assumptions, the limiting form of these 
recursive equations is a first-order, partial differential equation. 

Let R(t,,x,) =R(t,,Xb, X2 , .-., Z ) denote the minimum value of the 
performance index 0 b 

for the solution x(t) which begins at the point 

satisfies the differential constraints 

and the terminal conditions 

, (2.4.101) 

(2.4.102) 

(2.4.103) 

y (x&J =o ; j = /,h Ln*/ (2.4.104) 

and for which the control u (t) lies in the required set V In other 
words,R(t,,x,) is the minimum value of the performance index ior the 
problem of Bolza as expressed in the preceding section. Eq. (2.4.106) 
is some times written either as 

(2.4.105) 
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. -... .-. . .._-_--- 

or, as 

(2.4.106) 

to indicate that the minimization is performed through the selection of the 
control u and that this control must lie in the set U . 

To generalize Eq. (2.4.106), let&t,xti)) denote the minimum value of 
the performance index for the solution which starts at the point (t, x(t)) 
and satisfies the constraint conditions of Eqs. (2.4.103) and (2.4.104); 
that is, 

(2.4.107) 

Similarly, 

where the solution starts at the point ($t~t , XC($+&)) and satisfies 
constraints (2.4.103) and (2.4.104). Now, the Principle of Optimality states 
that if a solution which starts at the point (t, x(t)) is at the point 
(ttdt,xlttAL)) after the first decision 

L 
or the first set of decisions 

all the remaining decisions must be 1, op in-al decisions if the solution itself 
is to be optimal. Putting this statement into mathematical form, leads to 
the equation 

Q(f) xtt)) = M/N 
U(T)C U I 

R (8 tot, pAttAt))+ .-b,u)nt (2.4.109) 
(f L ‘t* ttat) 

Note the similarity between this equation and Eq. (2.4.21) developed for the 
problem of Lagrange. Again, it is to be emphasized that Eq. (2.4.109) is 
simply a mathematical statement of how the search procedure for the decision 
sequence is to be conducted. 
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To reduce (2.4.109) to a partial differential equation, one must assume 
that all second derivatives of R with respect to t and x are bounded; that 
is, 

(2.4.110) 

Under this assumption,R(z!+df,t(~ tAf))has the series expansion 

where T denotes transpose 

dx 
dt 

Substituting (2.4.111) into (2.4.109) along with the values for k from 
(2.4.108), provides 

In the limit asdt + 0 this expression becomes 

(2.4.113) 

which is a first-order, partial differential equation and will be referred to 
as the Bellman equation for the Problem of Rolza. The boundary condition 
which R(t, x(t)) must satisfy, will be considered next. 
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Since R(t, x(t) ) is the minimum value of the performance index for the 
solution which starts at the point (t, x(t)), it follows that R must 
satisfy the terminal condition 

However, in addition, the terminal point (tf, x (t,)) must satisfy the 
terminal constraints 

?$(f&) =o AT t’=$ ; j =I,@? (2.1+.115) 

Hence, the boundary condition on R becomes 

Analogous to the development of IQs. (2.4.63B) from the boundary condition 
(2.4.63A) for the problem of Lagrange, the above expression can be reworked 
to yield the equivalent condition 

= 1, h (2.4.117) 

where/C is the vector 

P = (2.4.118) 

If the final time tf is itself not specified, then the additional boundary 
condition 

must hold. 
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Collecting the results of this section, the solution to the problem of 
minimizing lkhe performance index 

(X,LfM f 9$, $1 = mi.ni.mum 
i, 

subject to the boundary conditions 

x = x0 AT t=t, 

Y-c+, tJ=o AT t =i+. 

and the state equations 

g. = I$ (22, u) C’= /, . . ..n 

can be generated by solving the partial differential equation 

(2.4.120) 

for Fl(t,x(t)) subject to the boundary conditions of Eq. (2.4.116) or Eqs. 
(2.4.117) and (2.4.119) where Eq. (2.4.119) is to hold only if the final 
time tf is not explicitly specified. 
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2.4.10 Ljnear Problem with Quadratic Cost 

To illustrate the method of solution by means of the Bellman partial 
differential equation, consider the following linear problem. Let the system 
state be governed by 

or in the vector notation 

i = A(f) 3: +G(t)u 

(2.4.1216) 

(2.4.121B) 

where A is an n x n matrix and G is an n x r matrix. The initial state is 
specified, while the terminal state must satisfy the m constraint conditions 

?Cij ,Z (1 )-a!=0 ; =I .I f i i ( . = /, m 
(2.4.122A) 

i=ty 
which can also be written as 

Cr, -d =O at f= tr (2.4.122B) 

where C is an m x n constant matrix and d is an m-dimensional constant vector. 
The problem is to select the control u so that the integral 

(2.4.123) 

with Q 
matrix g 

a n x n synn$,ric matrix with elements 9;" and Q a r x r symmetric 
th element fir9 . It is required that Q 

1 
'se a posl lve, definite -2. 

matrix (i.e.,urQIU 1s always greater than zero or any control u not equal 
to zero). Furthermore, the admissible control set U is the entire r-dimensional 
control space; or in other words, no constraints are imposed on the components 
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of the control vector u. Also, the final time, tf, is explicitly specified. 
Note that the simple attitude controller which was considered in Section (2.4.8) 
is a special case of the above problem. 

Substituting the state expressions of (2.4.121B) into (2.4.120) provides 

MIA/ @ I atj =o (214.124) 
uct)o u 

Since the admissible setu is the entire control space, the minimization 
operation in (2.4.124) is accomplished simply by differentiating with respect 
to u . Thus (2.4.124) is equivalent to the two equations 

(2.4.125) 

(2.4.126) 

Using Eq. (2.4.l22B), the boundary condition on R as given in Eq. (2.4.117) 
reduces to 

ON b-d =o 
t = f/. 

where/ is the m-dimensional constant vector 

Try as a solution, the function 

IQ= Y T S(r) p!trcdr 

(2.4.127) 

(2.4.128) 

(2.4.129) 
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where S(t) is some n x n symmetric matrix and z(t) is an n vector. By the 
appropriate selection of S(t) and z(t), the R function in (2.4.129) can be 
made to satisfy both the differential equation and the boundary conditions 
of (2.4.125) to (2.4.12'7). This point will be illustrated next. 

Substituting (2.4.129) into (2.4.U.5) and (2.4.l26), it follows that 
the optimal control must satisfy 

= - Q;' G'S(t) x(t) 

with S and z satisfying the ordinary differential equations 

3 = -Q,-~b,4’S+SGQ~G’S 

For the boundary condition of (2.4.127) to hold, it follows that 

(2.4.130) 

(2.4.131) 

(2.4.132) 

where the m-dimensional multiplier 
/u 

is selected so that the constraint 
conditions 

(2.4.133) 

(2.4.134) 

are satisfied. 
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Equation (2.4.131) governing the evolution of the matrix S is nonlinear 
and, hence, difficult to solve. However, the matrix S need not be explicitly 
evaluated to determine the optimal solution which from (2.4.130) to (2.4,135) 
depends only on the terms SX and z. It will be shown next that these terms 
satisfy a linear equation and can be evaluated rather easily. 

Let P be the n-dimensional vector 

Substitution of this variable into (2.4.130) to (2.4.134) and using the 
state equation for x provides 

u= Q,-’ G ‘P 
2 

p’ = -A; +ZQ,/u 

i 
G Q;'G; 

-Ax- 2 

(2.4.135) 

(2.4.136) 

(2.4.13’7) 

(2.4.138) 

with the boundary conditions 

x = %o AT t=c$ (2.4.139) 

(2.4.140) 

Note that the new equations in p and x are linear and that the two-point 
boundary problem as represented in Eqs. (2.4.137) to (2.4.140) can be solved 
directly (i.e., without iteration). The optimal control is then evaluated 
using EYQ. (2.4.136). The method will be illustrated next on the simple 
attitude control problem of Section (2.4.8). 
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The governing equations for the attitude controller are 

2, = x2 

i2 = u 

with the initial conditions 

%, ( to ) -- z,o 
%- cr,) = x2 

0 

(2.4.141) 

(2.4.142) 

and with no terminal conditions imposed; that is, all the y 
are identically zero. The matrices A, Q1, 

in Q. (2.4~18~) 
Q2 and G for this'problem are 

(2.4.143) 

Hence, Eqs. (2.4.138) to (2.4.140) become 

(2.4.144) 

Since no terminal constraints are imposed, it can be shown from Eqs. (2.4.117), 
(2.4.1331, and (2.4.140) that at the terminal point 

The solution to this system can be written 

(2.4.145) 

(2.4.146) 
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where 7, is the 4 x 4(matrix fundamental matrix solution) \ 

X@,rb) = 
(2.4.147) 

and wherep[&)is the initial value 
with (2.4.145). 

ofp and is to be selected consistent 
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2.4.11 Dynamic Programming and the Pontryagin Maximum Principle 

For the Bolza problem under consideration, the state system is given 
by 

ii = 4 cr, u) 
and the boundary conditions by 

(2.4.148) 

x = x0 AT t =t, (2.4.149) 

7 C;r,,$)=O j .J=/,& pr r=+ (2.4.150) 

where t may or may not be specified. The control action u is to be selected 
so thatfan integral plus the function of the terminal state of the form 

G 
J ={ % (x,u)ort + +(X,9t,)= minimum 

0 

(2.4.151) 

is a minimum. An application of the Pontryagin Max5mum Principle to this 
problem (Ref. 2.4.3) leads to the following requirements: 

(1) the control u is selected fromu so that at each instant the 
quantity H where 

H = p’ f (x, u)- 7&t) = J; 3 5. (+.+ih%,U) (2.4.152) I 
is maximized. 

(2) the adjoint vector? satisfies the differential equations 

(2.4.153) 



s(3) the boundary conditions on the p vector are 

(2.4.154) 

where,& is an m-dimensional constant vector which is 
selected so that the m terminal constraints 
are satisfied. 

(4) x'+' = jq'-'{i.ejp is continuous across discontinuities in u I 

(2.4.1558) 

It is not difficult to verify that the p vector used in the preceding 
section, in connection with the linear optimization problem, does satisfy 
these conditions. It will be shown in this section that the Bellman 
equation, Eq. (2.4.120), can be used to develop the above equations of 
the Maximum Principle for the general Bolza Problem. The approach to 
be taken is essentially the same as that used in Section (2.4.4) to relate 
the Calculus of Variations and Dynamic Programming for the problem of 
Lagrange. 

From Eq. (2.,!+.120), the Bellman equation for the Rolza Problem is 

with the boundary condition 

(2.4.155B) 

(2.4.156) 

35 If the final time is not explicitly specified, the terminal condition 
must hold: 

=o (2.4.154A) 

*+ this equation is valid only if the final time is unspecified. 
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M 
Since 3t does not depend on u explicitly, the control u which minimizes 
the bracketed quantity in Eq. (2.4.155) also minimizes the quantity 

c n JE {(r,u) ti&x,u, 
i=l aq 

, or alternately, maximizes the quantity 

6 (Y,ULRIZ,Ll) l Let the p vector be defined by 

(2.4.157) 

Then, it follows that the optimal control is that control in the set which 

maximizes $a 73;E(xau) - wd. Thus, condition (1) of the 

Maximum Principle is satisfied. With the definition of Eq. (2.4.157). the 
boundary condition in Eq. (2.4.156) is 

7; t f<. + 2 Atj i$i 
j., . 

And since from(2.4.1561 
c 

i = I;-;n (2.4.158) 

which agrees with condition (3) of the Maximum Principle. 

To demonstrate that the p vector satisfies Eq. (2.4.153), a technique 
developed by S. Dreyfus [Ref. (2.4.111 is used. From (2.4.157), 

(2.4.159) 
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ae 
But from (2.4.155B) it follows that the quantity~(x,L()+C~~~(;t,u)c- 
has a minimum of u=uopt and that this minimum value is‘lero. IFU 
is held fixed at its optimum value which. corresponds to some point(z,2) 
{ia +t = u,,t (*,,!I] then this bracketed quantity, considered as a function 
of x,t, will have a minimum at the point f, z . Hence, 

Z=x^ 
=0 f=/,n 

and substituting this expression into (2.4.157), yields the desired result; 
namely, 

d'=- 
df 

(2.4.160) 

The fourth condition follows directly from the original assumption on the 
R function needed to develop the Bellman equation. 
(2.4.W)] q 

This assumption [see 
re uired that the second derivatives of R be bounded; hence, 

the first derivatives must be continuous. Thus, 

and condition (4) is satisfied. As discussed at the start of this section, 
this requirement in the second derivative s is not always satisfied, a point 
which will be treated later on. 

The conditions of the Maximum Principle as developed from the Bellman 
equation and represented in (2.4.152) to (2.4.155) will now be used to 
solve the first example problem in Section (2.4.8). 

The guidance problem of Section (2.4.8) is represented by the equations 
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with 

The P vector for the system is 
7+ =o 

. 
pz = 0 

PJ = - PI 

?+ = - P2 

p;’ 
PJ CA, % cm Icr 

I 
f P4 L g A& u5 

and the boundary conditions % G 

% = /u, 

(2.4.161) 

(2.4.162) 

Sf = ’ 
where the 

Pi 
are constants td be selected so thai the boundary conditions on 

the state variables at t = tf] are satisfied. Since the final 

time is not explicitly stated, the additional condition 
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must also hold. 

Let 

From Eq. (2.4.152) the control u is to be selected to maxjmize 

then 

Thus, for the control to maximize H, cos (u2 - p) = 1 and 

with the H function 

Hence, for U, to maximize H 

(2.4.163) 

(2.4.164) 
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where 

(2.4.165) 

With the control known as a function of the state and P vectors, the 
solution to the problem can be achieved numerically on a digital computer 
with the boundary conditions of (2..!+.160B), (2.4.162) and (2.4.162A) just 
sufficient to determine a unique solution to the differential equations in 
(2.4.1608) and (2.6.161). The solution to this problem is considered in 
some detail in Refs. (2.4.4) and (2.4.5). 
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(2.4.12) Some Limitations on the Development of the Bellman Equation 

The preceding paragraphs of this section have been primarily concerned 
with reducing the computational algorithm inherent in the Principle of 
C@timality to a certain partial differential equation called the Bellman 
equation. From this equation various additional properties of the optimal 
decision sequence have been developed and shown to be equivalent to the 
necessary conditions normally developed by means of the Calculus of Variations 
or the Maximum Principle. In some special cases, however, the Bellman 
equation, which results from considering the Principle of Optimality in the 
limit as the separation between states and decision goes to zero, is 
erroneous. 

In developing the Bellman equation which, for the Bolza probleln, took 
the form 

(2.4.166) 

it was necessary to assume that all second derivatives of R exist and are 
bounded (see Eq. 2.4.115) which implies, among other things, that all 
first derivatives of R exist and are continuous. It is shown in Ref. (2.4.3) 
that occasionally the derivatives 2% do not exist at all points in the 
(t, x) space and hence, that Eq. (2.4'.166) is not always correct. The 
type of problem in which this may happen is one in which the control action 
appears linearly in the state equations; that is, the state equations take 
the form 

(2.4.167) 

with the result that the optimal control is bang-bang in that it jumps 
discontinuously from one boundary of the control set 7-f to another boundary. 
If there exists a curve in the (x, t) space (called a switching curve) with 
the property that all optimal trajectories when striking the curve experience 
a control discontinuity, and if furthermore a finite segment o$Ethe optimal 
solution lies along the switching curve, then the derivatives - may 
not exist along the switching curve and Eq. (2.4.166) may not f%'applicable. 

As an example of such a problem, consider the second order integrator 

% = x2 
(2.4.168) 

?2 =U 
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with 

(2.4.167) 

and with the boundary conditions 

4 =x 
'0 

x2 = x2 
0 I 

x, = 0 

x2 = 0 / 

The optimizing criterion is time, with 

d-0 

f = if 

(2.4.170) 

(2.4.171) 

t, 
= /id/N (2.4.172) 

It can be shown using the Maximum Principle that the solution to this problem 
consists of segments along which u = + 1 and segments along which u = - 1 
with the two types of control separated by the switching curve as shown on 
Sketch (2.4.7). Since the switching curve is the only curve which satisfies 
both the state equations and the optimal control condition, and which goes 
through the origin, it follows that all optimal trajectories have segments 
lying on the switching curve. 
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Now if the Maximum Principle is used to determine the optimal solution 
for a variety of initial conditions, the minimum time t can be developed 
as a function of x and r, and this time is equal to t i e function 
Rtt,, A) appea&ng in t%e Bellman equation. Thus, R(t,wtt>) can be 
developed from the Naximum Principle, and what's more, the development is 
straightforward and can be accomplishedL~alytica~J,y. It is then just a 
matter of differentiation to show that 
across the switching curve and that the ~~~~de~io~o~~s~~~t~~~~ 
along this curve. 

Dreyfus, in Chapter 6 of Ref. (2.4.1), shows how problems of this type 
can be handled using Dynamic Programming. The method consists essentially 
of solving F,q. (2.4.166) on both sides of the switching curve and then 
patching the solution across the curve through the use of a specialized 
form of the Bellman equation which is valid along the switching curve. To 
use such an approach, however, one must know that the problem possesses 
a switching curve and also the equation of this curve -- howledge which 
one usually does not have until after the solution has been developed. 
Hence, while a modified Bellman equation can be developed in these special 
cases from which a solution to the problem can be generated, the development 
requires a priori knowledge of the solution structure -- a rather imperfect 
state of affairs to say the least. 

This shortcoming of the limiting form of Dynamic Programming is by no 
means severe. The class of problems to which the Bellman equation of 
(2.4.1.66) does not apply appears to be rather small with the problem 
themselves atypical. Hence, one can feel reasonably confident that the 
Bellman equation as developed for a particular problem is indeed correct, 
unless, of course, the problem possesses the linear structure indicated 
in ICC. (2.4.167) and there is evidence of the existence of a switching 
curve. In such cases one should exercise some caution in working with 
the Bellman equation. 
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2.5 DYNAMIC PROGRAMMING AND THE OPTIMIZATION OF STOCR$STIC~S$3Tl34S 

2.5.1 Introduction 

The previous sections of this report have dealt exclusively with the 
optimization of deterministic systems. In this section, some optimization 
problems are considered in which the equations describing the system 
contain stochastic or random elements. This extension is considered 
desirable, if not necessary, since all phenomena occurring in nature are 
stochastic. That is, every physical process contains some parameters or 
elements which are not known exactly but which are known in some statistical 
sense. Fortunately, in many systems, the total effect of these random 
parameters on system behavior is negligible and the system can be approxi- 
mated by a deterministic model and analyzed using standard procedures. In 
other cases, however, the random elements are not negligible and may 
dominate those elements which are known precisely. The midcourse correction 
problem encountered in lunar and planetary transfer maneuvers is a case in 
point. 

Due to injection errors at the end of the boost phase of a planetary 
transfer, the vehicle's trajectory will differ slightly from the desired 
nominal condition, and hence, some correction maneuver will be required. 
To make such a maneuver, the trajectory error must be known; 
and so radar and optical measurement data are collected. This data will 
lead to a precise determination of the trajectory error only if the data 
itself are precise. Unfortunately, the measurements and measuring devices 
are not perfect. Hence, the midcourse maneuver which is made will not 
null the trajectory error. Rather, it will null some estimate of the error, 
for example, the most probable value of the error. The determination of when 
and how to make these corrections SO that the fuel consumed is a minimum is 
a problem of current interest in stochastic optimization theory. Note that 
if a deterministic model of the planetary transfer problem were used, the 
problem itself would cease to exist. 

At the present time, the area of optimal stochastic control is just 
beginning to be examined. Thus, there are no standard equations or 
standard approaches which can be applied to such systems. In fact, the 
literature on the subject contains very few problems which have been solved. 
One reason for this limited amount of literature is that the fundamental 
equations which are encountered are of the diffusion type; that is, they 
are second order partial differential equations, Hence, the method of 
characteristics, which is used in the deterministic case and which reduces 
the Bellman equation to a set of ordinary differential equation, can not be 
applied; rather, the partial differential equations must be utilized 
directly. 

A second factor contributing to the difficulty in handling stochastic 
problems is that the type of feedback being considered must be explicitly 
accounted for. This situation is just the opposite of that encountered 
in the deterministic case. If the initial state is known along with the 
control to be applied in a deterministic system, then all subsequent states 
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can be determined simply by integrating the governing equations. In the 
stochastic case, the initial state and control are insufficient to determine 
all subsequent states due to the presence of disturbing forces and other 
random elements. Hence, only an estimate of the state can be generated 
and the estimate will be good or bad depending on the rate, quality and 
type of information which is being gathered. This estimate or feedback 
loop must be included in the analysis of the stochastic system. 

Finally, a third factor which complicates the stochastic problem is 
the inclusion of terminal constraints. In the deterministic case, the 
presence or absence of terminal constraints has little effect on the 
analysis involved. In the stochastic case, the inclusion of terminal 
constraints makes the analysis much more difficult since the means 
employed to handle the constraints is not unique. For this reason, most 
of the literature on optimal stochastic control does not consider the 
terminal constraint problem. 

In the following paragraphs, only one very specialized type of 
stochastic problem will be analyzed; namely, the stochastic analog of the 
linear-quadratic cost problem treated in Section (2.4.10). While this 
problem is not typical of all stochastic optimization problems, it can be 
solved rather easily and is frequently used as a model for stochastic 
problems occurring in flight control systems and trajectory analyses. 
Also, three different feedback loops or types of observability will be 
considered: 

(1) Perfectly Observable: the state or output of the system can be 
determined exactly at each instant of time. 

(2) Perfectly Inobservable: no knowledge of the state or output of 
the system is available once the system is started. 

(3) Partially Observable: observations of the state or output of 
the system are made at each instant but the observations them- 
selves are contaminated by noise. 

Of the three, the partially observable case is the most representative 
of the type of situation which would occur in an actual system. The 
other two are limiting cases, with the perfectly observable or perfectly 
inobservable system resulting as the noise in the observations becomes zero 
or infinite, respectively. 
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2.5.2 Problem Statement 

Let the system be described by the differential equation 

i =Ax+Gu (2.5-l) 

where x is an n vector denoting the state of the system, u is an Yvector 
denoting the control, r is an n 
forces and A and G are nxn 

vector denoting noise or disturbing 
and nxr matrices, respectively. The 

state of the system is not known initially. Rather, the initial state, 
$0 , is a Gaussian random variable with mean & and covariance matrix 

v, ; that is, 

E (x0) = x”, 
& ((%,- & ) (?ix,- ;i,i ) = 4 (2.5.2) 

where L denotes the expectation operator defined over the entire ensemble 
of states. Alternately, the Gaussian random variable can be represented 
by its density function 

P 0x0) = p @‘a)xz, , . ” XmJ = 
a} 

@.5+3) 

with 

E (X0) = JTo P (x0) dx, 
-g 

~+~o)ob- ~,fP(Xe)dx, 
(2.5.4) 

Note that the case in which JL" is precisely specified can also be 
included in this formulation by requiring that 

E ((h - i.)(x,- &;) = vo = 0 
(2.5-5) 

where now ?a denotes the specified value of X0 In this case, the 
density function in Eq. (2.5.3) b ecomes a produci of n Dirac delta 
functions with 
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The noise vector, 3 , which appears in the state equation is required 
to be a Guassian white noise with zero mean and covariance matrix Z:(k) l 

Thus 

(2.507) 

where S(ti- Y) is again the Dirac delta function denoting the 'white' 
or uncorrelated property of the noise. Note that x(t) is a symmetric 
matrix and will be positive definite in the case in which E is truly 
an n vector. In the case in which f is not P dimensional, additional 
components of zero mean and zero variance can be added to make it n 
dimensional. In such cases, the nxn symmetrix matrix C(t) is only 
positive semi-definite. An example of this will be given later. 

The optimization problem is to determine the control action 
such that the expected value of a certain functional J is a minimum; that 
is, 

(2-5.8) 

where Q2 is a positive definite symmetric matrix and Q and /t are 
positive semi-definite symmetric matrices. The admissibl: control set u 
is the entire r dimensional control space. Thus, no restrictions are 
placed on the control vector u . Also, it is assumed that no constraints 
are placed on the terminal state. 

This problem is quite similar to the linear quadratic cost problem 
treated in Section (2.4.10). 
the disturbing force P 

The state equations are the same except for 
, while the problem of minimizing a quadratic 

functional J has been replaced by the problem of minimizing the average 
or expected value of J . 

To illustrate the type of physical situation that can be represented 
by Eqs. (2.5.1) to (2.5.8), consider a stochastic version of the simple 
attitude control problem treated in Section (2.4.8). Let the system 
equation be [see Eq. (2.4.97) and Sketch (2.4,6)]. 

where 1 is the moment of inertia, F is the applied force, 1 is the lever 
arm and f is a Gaussian white noise (one dimensional) with zero mean 
and varia&e 5 ; that is, 

* *As stated previously, only quadratic cost will be considered at this time. 
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qs2, = 0 

E(Fr c*& (7,) = al (t - 1) 

Now, introducing the variables 

x, = y 

er %a= 7 

F= U 

and letting 5 denote the ,? vector 

where $ is identically zero; equivalently, < is a Gaussian white 
noise with zero mean and zero variance. Under this change of variables, 
the system equation becomes 

Now, the performance index is defined to be 

It is observed that this problem attempts .to keep the expected value 
of a combined measure of the fuel and angular displacement and rate errors 
as small as possible. 
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In order to proceed with the solution for the general problem given in 
Eqs. (2.5.1) to (2.5.8), the feedback or observation loop must be 
specified. The reason for this is that the averaging process, that is, 
the expectation operator in Eq. (2.5.8), varies as the type and quantity 
of the observational data varies. As indicated in the introduction, 
three different types of observability will be considered and these are 
treated in the three succeeding sections. 

2.5.2-l %f.ectly Observable Case 

In the perfectly observable case, it is assumed that the entire 
output of the system (i.e., all the components of the vector x ) can 
be determined exactly at each instant of time. This type of situation is 
represented in the sketch below. 

(Disturbing forces) 

System 

Dynamics 

ic = AxtGu+k 

-Gk Control z 
Logic a Sensors - 

I 

Sketch (2.5.1) 

The state equations are 

>i, A%+Gui-c 

where 5 Is a Gaussian white noise with * 

E(e) = o 

. = z CtJ d(t-T) 

- x (Output) 

(2.5.9) 

(2.5.10) 

But, since the system is perfectly observable, it is assumed that the 
initial state of the system is known exactly with 

x = Coat t = to (2.5.11) 
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Thus, the performance index takes the form 

where the variable F has been placed under the expectation operator to 
indicate that the ltaveraging' is to be conducted over this particular 
variable, the only random element appearing in the problem. 

To determine the solution to this problem, the Principle of Optimality 
can be employed essentially as it was in the deterministic case. Let 
R(x,t, denote the minimum value of the performance index for the system 
which starts in state X at time .! ; that is, 

Now, this expression can be rewritten as 

R&t) = MIAJ. f 
44 

U (7) &T) LbTQ,U)dt + 
/ 

(XrQ,X+Ur’hU) dt+ %;A% 
t G-r Lt* 

t+At 

(2.5.14) 

But, since the first term in the square bracket on the right of (2.5.14) 
does not depend onU(r,) or f(Tz)for ttAtl% 6 ii , Eq. (2.5.14) can be 
written in the form 
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(XrQ,%fU&&) 4t + o(bt) + R(x+bx, t+bt) .(2-5.15) 

Finally, since the first term on the right of (2.5.15) does not depend on 
fty:) for t &7; 6 ttdt 

(2.5.16) 

Equation (2.5.16) is essentially a mathematical statement of the 
Principle of Optimality for the problem at hand. It indicates that the 
minimum average value for the functional is achieved by an optimum first 
control decision followed by an optimal sequence of control decisions which 
are averaged over all possible states resulting from the first decision. 
Note that R( X+LIX, f+ Ad) has the, expansion 

Using the expression for 2 and 5 in (2.5.9) and (2.5.10) and taking the 
expected value of~(Y+A~,icAt)over ftr;) fort c t;A t+At provides 
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#R 
where tr denotes the trace of the matrix C(f) ~7 . This last term is 
derived from the expected value of the'quantity 

E f 
(2.5.18) 

f(T) 
f'T'f+4t f'rLt*At 

The Dirac delta appearing in the variance expression for F in Eq. (2.5.10) 
causes this term to reduce to first order in dt . Substitution of 
Eq. (2.5.18) into (2.5.16) and taking the ,limit as At goes to zero 
provides the final result 

The boundary condition on Rtz,t) is easily developed from the 
definition of R given in (2.5.13). Thus, 

or alternately 

Rx,+) =;rTA;r (2.5.20‘) 

Eq. (2.5.19) is similar to that developed in the deterministic case 
[ see Equation (2.4.113)] , the only difference being the appearance of 

the term $(r;$) . This, however, is a major difference. 

Wh;Lle the Bellman equation is a first order partial differential equation 
and can be solved in a straightforward manner using the method of 
characteristics, this equation is a second order equation of the diffusion 
type. As a general rule, diffusion processes are rather difficult to 
solve. Fortunately, Eq. (2.5.19) solves rather easily. 
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Performing the minimization indicated in (2.5.19) 
derivative with respect to u to zero) provides 

i.e., setting the 

which can be rewritten as 

Substituting this expression in (2.5.19) yields 

It can be shown that (2.5.22) has a solution of the form 

(2.5.21) 

(2.5.22) 

(2.5.23) 

where S(t) is an fixn time dependent symmetric matrix and ,&ft) is 
a time varying scalar. This expression will satisfy the boundary condition 
of Eq. (2.5.20) provided 

set,) =A 
(2.5.24) 

pczy = 0 

Also, by substituting Eq. (2.5.23).into (2.5.22), it follows that the 
proposed R function will satisfy Eq. (2.5.22) if 

.i? +Q,-SGQ;IGTS+SA +A% = 0 (2.5.25) 

p’ + h(C$) =o (2.5.26) 

Collecting results, the solution is achieved by integrating Eqs. 
(2.5.25) and (2.5.26) backwards from f, to to and using the boundary 
conditions in (2.5.24). From (2.5.21) and (2.5.23), the optimal control 
action is then determined from. 

Ll= - Q2-‘GTSx (2.5.27) 
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The minimum value of the performance index is given by 

(2.5.28) 

Two observations concerning the control law of Eq. (2.5.27) can be 
made. First the control law in the stochastic case in identical to the 
control law for the deterministic case in which the random variable 5 in 
Eq. (2.5-g) is set to zero and the criterion of minimizing the expected 
value of J is replaced by minimizing J itself. Dreyfus in Reference (2.4.1) 
refers to this property as "certainty equivalence" and points out that 
it occurs infrequently in stochastic problems. However, a non-linear 
example of certainty equivalence is given in Reference (2.5.1). A second 
observation is that the.control law is an explicit function of the state, 
the actual system output. To implement this law, the state must be 
observed at each instant of time, a requirement that can be met only in the 
perfectly observable case; that is, the control law could not be 
implemented if something less than perfect knowledge of the system output 
were available. This point clearly demonstrates that the optimal control 
law in a stochastic problem is very much a function of the type of 
observational data being collected. 

For the treatment of additional stochastic problems in which perfect 
observability is assumed, the reader is referred to References (2.l.3), 
(2.4.1), (2.5-l) and (2.5.2). 

2.5.2.2 Perfectly Inobservable Case 

In this case, it is assumed that no knowledge of the output of the 
system is available for f p t, . A diagram of this type of controller 
is given in Sketch (2.5.2) below. 

,f (Disturbing forces) 

Sketch (2.5.2) 
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Note that since there is no feedback loop, the optimal control can be 
computed only as a function of time and whatever knowledge is available 
concerning the initial state x0 . 

Again the state equations are 

2 =Ax+Gu+f (2.5,291 

with F a Gaussian white noise with 

El)-, = 0 
&E{pw fw] = CW m-Y) (2.5.30) 

The initial state ,z, is assumed to be a Gaussian random variable with 
mean c6 and covariance v, , that is 

(2.5.31.) 

The performance index is again 

(2.5.32) 

There are two means available for evaluating the expected value of 
the functional J . First, the state equation can be solved to develop 
the function relationship between z and the random variables 5 and x6 . 
Following this development, the expected value of J can be computed by 
using the appropriate density function for f and x0 . A second approach 
is to develop the probability density function for X , p(x,t) , given 
the densities of X0 and p . This approach is more direct and will be 
used here since it leads to the rather simple relationship 

from which the .optimal control can be readily determined. 

Since the state equation is linear and since 5 and X, are Gaussian, 
it follows that the random process Z(C) is also Gaussian*. The mean and 

* See Reference (2.5.3) for the demonstration that linear transformation 
on Gaussian random processes lead to Gaussian random processes. 

119 



variance characterizing Ilt) can be evaluated either from the Fokker*-Planck 
equation (also called the forward Kolmogorov equation) on by direct 
calculation as follows. Let 2 denote the mean of .% and let v denote 
the covariance. Thus 

Dffferentiating these two equations, and using Eq. (2.5.29) yields 
. 

$ =AjbGu 
(2.5.36) 

3 =AVt V/ft& 

while from Eq. (2.5.31), the boundary conditions 

(2.5-37) 

must hold. Thus,the density for ?L is 

. with 2 and 3 satisfying Eqs. (2.5.36) and (2.5.37). 

Proceeding with the optimization problem, let 

F:-#p--jj 

Note that 

E(z) =E(,&)=.,O 

and from Eqs. (2.5.29) and (2.5.36) that 

(2.5-39) 

(2.5.40) 

(2.5.41) 

* See Reference (2.5.4) 
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thus, substituting the expression 

into Eq. (2.5.32) and making use of (2.5.40) reduces the optimizing 
criterion to 

Furthermore, since 

where tr denotes the trace operator, and since 

Eq. (2.5.42) can be rewritten as 

E(J) =s';g'g,i +Q~Q~ &)dt t ,$'JI?~ tStr(VQ,)dttfr(~/1)(2*5.43) 

4 0 

Now since the covariance I! does not depend on the control U L see Eq. 
(2-5.36) 3, it follows that minimizing the expected value of f is 
equivalent to minimizing the first two terms on the right hand side of 

optimal control is that control which minimizes the 

subject to the conditions 

j=AS+Gu 
i2.5-45) 

This reduced problem is deterministic and can be solved using the methods 
of Section (2.4.10). 

Letting RcS,t) denote the minimum value of J for the trajectory 
staY_ti.ng 3-t the point tj?,t) , it follows from Dynamic Programming that 

Rcx,t) satisfies the Bellman equation and boundary condition given by 
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The solution takes the form 

with s satisfying 

s ($J = A 

and the optimal control given by 

&=-A 2 Q,‘‘GT -$ = -Q;‘ifSg 

Thus, 

Substitution of this expression into Eq. (2.5.43) now gives 
expected value of J as 

(2.5.46) 

(2.5.47) 

(2.5.48) 

(2.5.49) 

(2.5.50) 

(2.5.51) 

the minimum 

Two comments on the form of the control law given in Eq. (2.5.51) are 
in order. First, it is the same form as that which would result for the 
deterministic problem, but with the state x replaced by the expected 
value of the state. This result, while interesting, is not surprising in 
view of the similar findings for the perfectly observable case of the 
preceding section. Secondly, the variable 2 on which the control depends 
is a function only of the expected initial state and time. No feedback 
information is used in the computation of 2 , a result consistent with the 
perfectly inobservable quality of the system. 
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It is interesting to compare the value of the performance index for 
the perfectly, observable and perfectly inobservable cases. Since more 
information is available and is used in the perfectly observable case, the 
performance index for the perfectly observable case is the smaller of 
the two. Let the covariance of the initial state, V, is Eq. (2.5.31) be 
taken as zero. Hence, the initial state is known exactly in both the 
perfectly observable and inobservable cases and is given by 

4 
8-L = z. AT t-4 

From Eq. (2.5.28) and the expression for @ in (2.5.24) and (2.5.26), 
the performance index in the perfectly observable case is given by 

! 

4 

EfJ) = $5X0) Jo f tr (CS) dt (2.5.53A) 
OBSIiUVABLE 4 

while from Equation (2.5.52) 

IN OBSEK?VABLP 
~'s&,);, +jtr(I/Q,)dt +tr&A) (2.5.53B) 

c 

Since the matrix s satisfies 
both cases, it follows that 

ml -E/-i{ 

the same equation and boundary condition in 

This difference can be shown to be positive by noting that s and V,from 
Eqs. (2.5.49) and (2.5.36),satisfy 

(2-5=55) 

Integrating this expression with the condition that t/(f,)=O and 
combining with (2.5.54) yields 
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Since V is positive definite for f *f, and Qz is positive definite, 
it follows that the right hand side of (2.5.56) is positive and that the 
performance index in the perfectly inobservable case is always larger than 
that for the perfectly observable case. 

2.5.2.3 Partially Observable Case 

The partially observable case differs.from the preceding cases in 
that some knowledge of the system output is available at each instant, but 
the knmledge is imperfect due to the presence of noise and the possibility 
that only a part of the output can be measured. The system is again given 
by 

;; =Ax +Gu + F (2.5.57) 

with X,aGaussian variable with mean and covariance given by 

(2.5.58) 

The fact that some data are being collected (i.e., some observations are 
being made) is represented by the equation 

where y is the M dimensional observation vector irnkfil , M is an mxn 
time varying matrix and d is a white Gaussian noise with zero mean and 
variance r(t) ; that is, 

The physical situation is pictured in the sketch below. 
Z (Disturbing forces) 

+ 
L Dynamics z __ /v -Mx(Output) 

ic= Ax+Gu+ 
4 

-Gu Control 
Y Sensors 

Logic L- 
y= MztT 

1 
Sketch (2.5.3) 

'7 ( sensor noise) 
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Let Y tt) denote the observations that are made on the interval 
(t,, t) , that is 

(2.5.60) 

The expected value of the functional J can be written as 

(2.5.61) 

where p(;r,v,,C) is the joint density function for x and 
i? 

as developed 
from the density functions for f , +7 and ;r, . The vari ble Y must be 
included since the control u(t) will depend on, and vary with, the 
observations. Now the density P(x $W) can be expressed as 

plx, $Q,t! = p(x, qvpcy! 

where ptX, t/v) is the probability density of F conditioned on . 
Also, the expected value of some function K(x, y' can be written a 

Using this result, the performance index in Eq. (2.5.61) can be written 
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where the first expectation on the right is taken with respect to 
Y and 

the second with respect to ;z conditioned on 
Y 

. 

It is well known that the conditional density pCx,t/Cj) for the 
problem under consideration is Gaussian with mean 2. and covariance V 
satisfying the differential equations and boundary conditions 

(2.5.64) 

These results can be derived either directly by differentiating and reworking 
the defining expression 

2 = E ( Zct yycti) (2.5.65A) 

(2.5.65B) 

as in Ref. (2.5.5) or through &he modified Fokker-Planck equation as 
developed in Ref. (2.5.6). As in the perfectly inobservable case, let 

x =;;;tjz (2.5.66) 

with 7 satisfying the differential equation 

and with 

(2.5-67) 

(2.5.68) 



Then, substituting (2.5.66) into (2.5.62) and making use of (2.5.68) 
reduces the performance index to the form 

(2.5.69) 

Note that the terms in the second bracket do not depend on the controlu 
or on the observations Y since the variable Z is not a function of ti 

In fact, these terms can be immediately evaluated using x as 
,"Efi%ei in Eqs. (2.5.65B) and (2.5.68). The final result for the performance 
index is 

From this equation, the optimal control is that control which 
minimizes the expression 

Let 

for the optimal solution starting at the point lg,t) . 
satisfies the boundary condition R(iZ,$I=;r^Q.G 

Then R(i!, tl 
. Using the Dynamic 

Programming approach 

-&At 
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Taking the limit and using the expression for 2 in Eq. (2.5.636) provides 

where the second order term arises in exactly the same manner as in 
Eqs. (2.5.18) and (2.5.19) for the perfectly observable case. Performing 
the minimization as indicated in (2.5.72) provides 

(z-5*73) 

Thus, substitution of this expression for U back into (2.5.72) yields 

Equation (2.5.74A) is essentially the same as the diffusion equation 
which resulted in the perfectly observable case and has a similar solution. 
Letting 

RG,d) =2Tstt)t +/at, (2.5.74B) 

and substituting this expression into (2.5.74A) provides 

p' +fr{svMTr-'A4v~ =o 

The boundary condition on R ,i.s satisfied for 

(2.5-76) 
/at,) = 0 

128 



- 

while the optimal control takes the form 

u= -Q;’ G’S; 

Note that the optimal control is a function of the estimate of the state 
which in turn depends on the observations as indicated in Eq. (2.5.62). 
Using Eqs. (2.5.74B) and (2.5.70), the minimum value for the performance 
index is 

The minimum performance index for the partially observable case falls 
somewhere between that for the perfectly observable and that for the 
perfectly inobservable system; that is 

(2.5.78) 

This statement can be shown by considering the case where the initial 
state is known (i.e., the variance for the initial state is zero, 6 =0 ). 
Since the matrix 5 is the same in all three cases, it follows from 
Eq. (205*53A), and the definition of ,& in (2.5.75) and (2.5.76) that 

But from the definitions of V and s in (2.5.63B) and (2.5.75) 

Thus, integrating with V, =O and substituting into (2.5.79) yields 

II 
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Since V is positive definite for t p$, and &' is positive, one half of 
the inequality in (2.5.78) is established. To establish the other half, 
note that from Eqs, (2.5.33B) and (2i5.77) 

Note, also, that the variance functions, v , are different in the two 
cases. However, making use of Eq, (2.5.55) for the inobservable case and 
Eq. (2.5.80) for the partially observable case reduces (2,.5.81) to 

Now, since V in' the partially observable case is less than r/ in the 
perfectly inobservable case (i.e., the observations y reduce the variance 
in the estimate of ,X ) the inequality 

is established. 

2.5.2.4 Discussion 

In all three cases, perfectly observable, perfectly inobservable and 
partially observable, tie form of the optimal control action is the same. 
Specifically, the optimal control is a linear function of either the state, 
or the expected value of the state, with the proportionally factor being 
the same for each case. This is a rather striking similarity, but one 
which appears to hold only for the linear - quadratic cost problem. 

Note that the performance index, which is to be minimized, decreases 
as a quality of the observational data increases. The two limiting cases, 
the perfectly observable and perfectly inobservable systems, provide lower 
and upper bounds, respectively, for the performance index value which can 
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be achieved by a partially observable system. 

The analysis through which the optimal control action is determined 
consists of a rather straightforward application of Dynamic Programming, 
While it is not difficult to formulate the perfectly inobservable problem 
using other methods, there appears to be no way of treating the perfectly 
observable or partially observable case using the Variational Calculus. 
Hence, the stochastic optimization problem is one area where Dynamic 
Programming is not an alternate procedure, but frequently the only procedure 
available for conducting the analysis. 
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2.5.3 The Treatment of Terminal Constraints 

In the preceding section, the optimal control action was developed 
under the condition that no constraints were placed in the terminal 
state Xc . In this section, a slightly modified version of the linear- 
quadratic cost problem will be analyzed in which the expected value of the 
terminal state is required to satisfy one or more conditions. Specifically, 
the system is again governed by the state equation 

2 = AXtGU+g 

with e Gaussian white noise satisfying 

This time, however, the performance index takes &he form 

(2.5.83) 

(2.5.84) 

Note that no measure of the terminal error is included in E(J,\ .; that is, 
.the performance index is a sub-case of the previous performance index in 
which the matrix A has been set equal to zero. The reason for this change 
will become agparent'shortly. 

Let z+ = ic*4) denote a P vector which is linearly related to 
the terminal state through 

+!(lk+) = +, = ffX$ (2.5.86) 

where fl is a constant PXW matrix and where PS*l. Three different types 
of terminal constraints will be considered. 

is a scalar 

, 

In the first case, the symbol W denotes the trace of the.matrixE {2+ Z'), 
Hence, the sum of the diagonal elements of E i Z+ 2:; is required to be less 
than or equal In.the'second Case, the individual diagonal 
elements of (c[z+ $\)iL ,, i = I, P > are required 
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to satisfy an inequality condition while in Case (3), only the first p, 
diagonal elements of Jvt zr 

0) 
are constrained. 

meaning of these constrain&, 
To clarify the physical 

z% me examples will be considered. 

Suppose the state, x , is six dimensional and the matrix H in 
Equation (2.5.86) is the row vector H = CI, O,O,o,go> {i.e,~=~) . In 
this case, and all three constraint conditions takes the 
form z4 = x, (t+> 

E (x, 0*-f) 4 c 

For a matrix t-l possessing the 2 rows 

it follows that 

H' * 
( I, , 0, I, 0, 0, OS 0, 0, 0, 0 0' > 

with 

In this case, the terminal constraint of Equation (2.5.876) takes the form 

while (2.5.87B) reduces to the two conditions 

As a third example, suppose tf is the identity matrix. Then Equation 
(2.5.876) states that 



F 

while Equation (2.5.87B) requires 
ioh;) f C# 
c bc;, 1 ci 
. . 

h(Xc',, f C‘ 

Alternately, if the constraint of Equation (2.5.87C) is imposed, then 
only P, of the above conditions must hold where p, is some integer less 
than six. 

These three possibilities by no means exhaust the types of H 
matrices that may be used. Flather, they are introduced simply to indicate 
the types of physical situations that can be represented by constraints 
of the form of Equations (2.5.878) to (2.5.87C). In the following de- 
velopment, it is only required that H be some constant matrix with 
dimensions less than or equal to & , where h is the number of components 
in the state vector K . 

As a further simplification, it will be assumed that the symmetric 
matrix Q, in the performance index of Equation (2.5.85) can be 
expressed as 

(2.5.88) 

where @ (+I is the fundamental Mxn matrix solution 

(2.5.89) 

(2.5.90) 
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(In what follows, the symbol 4 will frequently be used to denote 4 &,t).) 
Since H is a Prm matrix, it is necessary that Q be a P* P symmetric 
matrix. Also, since PI is positive semi-definite, it follows.that Q 
is also positive semi-definite. The reason for this assumption as to 
the form of Eq. (2.5.88) will be made clear subsequently and it will be 
shown that Eq. (2.5.88) is physically consistent with the terminal con- 
straints of Eq. (2.5.87). 

Following the usual procedure of the Calculus of Variations, the 
problem of minimizing the functional tc 41 I 

subject to a terminal 
constraint on the quantity 

is equivalent to minimizing the modified functional where 
._ 

(2.5.90 

where A is a pxr constant diagonal matrix of Lagrange multipliers 
(recall that H is a pzn matrix), and selected so that the specified 
terminal variance condition is satisfied. The particular form of the 
matrix A will depend on the particular' terminal constraint which is 
imposed [i.e., Equation (2.5.87A) or (2.5.87B) or (2.5.87c)]. For example, 
if X is a six dimensional vector and H is the matrix 

H= I, 0, 0, 0, 0, o 

0, 1,0, 0, 0, O 

the terminal constraint of Eq. (2.5.878) becomes 

and the quantity to be adjoined to Eq. (2.5.85) to form (2.5.91) is 

This form is equivalent to provided 

quantity to be adjoined to Eq. (2.5.91) is 
(2.5.87B) is imposed, the 
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which will equal to 
+ tat tf q] 

In any event, whatever the form of the matrix H , if the terminal 
constraint is to satisfy one of the conditions in Eq. (2.5.87), then the 
problem can be handled as is indicated in Eq. (2.5.91). Using the 
definition in Eq. (2.5.88) and noting that 

the performance index can be written as 

One further simplification is necessary before proceeding with the 
optimization problem. Let 

(2.5.93) 

Thus, differentiation of this expression with respect to time and using 
Eqs. (2.583) and (2.5.89) provides 

2 = Hd'G,, fffv (2.5.94) 

with the boundary condition 

(2.5.95) 
A 

Now, since XO is a Gaussian random variable with mean X, and covariance 
VO it follows from (2.5.95) that Co is Gaussian with mean and covariance 

given by 

(2.5.96) 
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The developments in the preceding paragraphs, while algebraically 
complex, considerably simplify the terminal constraint problem, Sub- 
stituting the definition of Eq. (2.5.93) into the performance index of 
(2.5.92) provides 

The problem is now one of selecting the control U to minimize 
subject to the new state equation 

t = H46U + n4r (2.5.98) 

and where t. is a Gaussian random variable given by Eq. (2.5.96). The 
elements of the diagonal matrix A are to be selected so that the 
particular terminal constraint specified by one of the equations in 
(2.5.87) is satisfied. The number of independent or free diagonal 
elements in A is equal to the number of constraints contained in Eq. 
(2.5.87) l For example, if Eq. (2.5.87A) is imposed, (i.e., one constraint) 
then all the diagonal elements of A are equal with their particular value 
chosen so that (2.5.87A) is satisfied. If Eq. (2.5.87B) is imposed, then 
the first f, diagonal element are independent and the remaining p-p, 
are zero. 

Since the form of the expectation operator in the performance index 
depends on the type of observations taken, the perfectly observable, 
perfectly inobservable and partially observable case must be treated 
separately. This treatment follows in the next three sections. 

2.5.3.1 Perfectly Observable Case 

In the perfectly observable case , perfect knowledge of the state x 
is available at each instant of time. Since z and X are related by the 
deterministic transformation of Eq. (2.5.93), the vector e is also known 
at each instant. Hence, the problem is one of minimizing EM) where 

subject to the differential equation 

g.=. H46u+ ff@g (2.5.100) 

It is assumed that t. is know? initially, or alternately, that 20 is 
a Gaussian variable with mean t, and variance zero. 

This problem is the same as that treated in Section (2.5.2.1) except 
that A is not known; rather, this matrix must be selected to satisfy a 
terminal condition. However, the analysis is essentially the same once A 
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is determined. 

Let p(z,t') be given by 

then proceeding exactly as in Section (2.5.2.1) 

Taking the limit as At -0and using Eq. (2.5.100) provides 

with .~(t,t) satisfying the termjnal condition 

Thus, differentiating Eq. (2.5.102) with respect to u yields the 
optimal control 

(2.5.103) 

(2.5.104) 

and substitution of this expression into (2.5.102) provides 

This equation has a solution of the form 

R= A5 (t) 2 + B (*) (2.5.105) 

where S is a pxp symmetric matrix and p is a scalar satisfying the 
differential equations 

3 f Q - SH#GQ;'G~~$~H~S = 0 (2.5.106A) 

(2.5.106B) 
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and the boundary conditions 

5(Q) =A (2.5.106~) 
Be+) = 0 

The optimal control takes the form 

u = 4, trlffirs i? (2i5.107) 

The one remaining consideration is the selection of the matrix A 
so that the terminal constraint of Eq. (2.5.87) is satisfied.. This 
point will be treated next. 

I& 2 denote the expected value of t conditioned only on the initial 
information so= &, but using the optimal control of Eq. (2.5.107); 
that is, 2 (t1 would be the value which would be predicted for I(t) if 
the prediction were being made at time to . Similarly, let P denote 
the variance of L conditioned on the same information. Thus, 

2 = E (2) (2.5.108) 

and 

P=E@2j (2.5.109) 

Differentiating these expressions and making use of Eqs. (2.5.100) and 
(2.5.107) provides 

. 
.L -HaGQ;'&bL 's; 

p= - H&Q;'GT$#+rSf' - P.$H4W&7tTkr +#4fl&kT 

while the boundary conditions are 

2 (f.7) = ;, 

P (*cd = io 2,' 

(2.5.110) 

(2.5.111) 

(2.5.112~) 

(2.5.112B) 

Thus, a terminal constraint on r(Z, &"r) has been reduced to a con- 
straint on P (t4) since 

(2.5-113) 

The correct value of A , that is, the value of A which will satisfy the 
terminal constraint, can now be determined by the simultaneous solution 
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of the p and $ equations (i.e., Eqs. (2.5.106A) and (2.5.111) with the 
initial condition of Eq. (2.5.112B), the terminal condition of Eq. (2.5.106~) 
and with A selected so that Ptt,) satisfies the terminal variance 
constraint which is imposed. 

In.most cases, the solution will have to be achieved iteratively. 
Thus, the process might proceed as follows: 

(1) Guess the diagonal matrix A . As has been noted, the number of 
independent diagonal elements (i.e., the number of different 
quantities that can be guessed) is equal to the number of terminal 
constraints imposed. For example, if Eq. (2.5.87A) is used, 
then only one constraint is imposed and all the diagonal elements 
of -A are equal to some number, say A-. This number would be 
guessed to start the iteration. 

(2) Integrate the equation for Zi backwards in time with s (&+,) = n 
C i.e., integrate Eq. (2.5.106A) 1 . 

(3) Set p&J = ;,;zand integrate the P equation forward from 
*, to t, [i.e., Eq. (2.5.111) I. 

(4) Test P 14)to see if the specified terminal constraints are 
satisfied. 

(5) ze;hT2;onstraints are not satisfied, adjust h and go back to 
. 

Since the terminal constraints are inequality constraints [see 
Eq. (2.5.87)] , this iteration scheme will not lead to a unique solution. 
However, it can be shown, using standard methods from the Calculus of 
Variations, that A must be a negative semi-definite matrix, with the 
diagonal elements all less than or equal to zero. This condition 
suggests that the iteration loop above should start with the condition 

nzo; furthermore, it generally allows for a unique solution to the 
iteration problem. 

Summarizing the results for the perfectly observable case, the optimal 
feedback control is given by Eq, (2.5.107) where the matrix s is determined 
from Eq. (2.5.106A). The Lagrange multiplier matrix A is selected so that 
the simultaneous solution of Eq. (2.5.106A) and (2.5.111) lead to a control 
which satisfies the specified terminal constraints. 

2.5.3.2 Perfectly Inobservable Case 

The treatment of the, perfectly inobservable case parallels that given 
in Section (2.5.2.2) where no terminal conditions were imposed. Again, 
the problem is to minimize the performance index 

(2.5.114) 
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subject to the state equations 

1 = HtpGU t H$q (2.5.115) 

and a terminal constraint on the quantity Jz (q zf', - The initial 
state t. is a Gaussian variable with mean and covariance given in 
Eq. (2.5.96). 

Let 2 denote the expected value of t and P its covariance; that is, 

2 = E (Zj =H@E(X) 

P (&s - 2, <a -;,r > = bflp& (X-3 (X-3 4THT (2.5.116) 

Now, the expected value and covariance of X were calculated for the 
perfectly inobservable treatment given in Section (2.5.22) [see Eq. 
(2.5.36)] . Substituting these expressions into (2.5.116) provides 

3: = H&U 

; =h~x~‘w 

with the boundary conditions 

Also, letting 

it follows that 
Z= ;+z 

E (z) =E (2 f--j= 0 

t’ = WV 

(205.117) 

(2.5.118) 

(2.5.119) 

(2.5.120) 

(2.5.12oA) 

Thus, substituting the value for 7 given in (2.5.119) into (2.5.114) 
reduces the performance index to 
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(2.5.I.21) 

Thus, the control is to be selected to minimize the quantity inside the 
first set of brackets in Eq. (2.5.X1) (the quantity in the second bracket 
does not depend on U ), and the stochastic problem has been reduced to 
deterministic form. 

Then, using the Dynamic Programming approach, it follows that 

0 = ktlN ~‘Q~+LL~Q~u+~~ + 
u(t) -z 

with the solution 

(2.5.122) 

@.5.=3) 

(2.5.124) 

The optimal control is given by 

u=- Q;lGri 'ff rSi @.5.=5) 

To determine the value of h for which the terminal constraint is 
satisfied, note that 
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Since the quantity Q(-k+) is independen$ of the control action 
(see (2.5.117)), a*cons%raint on -e(+Z,) is equivalent to a constraint 
on the quantity ff ;,' .' Let 

w(t)= a7 

then from (2.5.117) and (2.5.125) 

(2.5.126) 

with 

% = 2, ;: (2.5.127) 

Thus A is to be selected so that the simultaneous solution of the 5 and w 
equations, which satisfies the boundary conditions of Eq. (2.5.124) and 
(2.5.LZ'7), provides a value of WJ(t,) which satisfies the terminal 
constraint. As in the previous case, the solution will usually require 
iteration. However, the matrix A is again negative semi-definite and 
this condition will aid in the iteration process. 

2.5.3.3 Partially Qbservable Case 

The problem is to select the control a to minimize the functional 

E (J) = E {l:fTQ t + UrQ, U) dt + S&L 2+ (2.5.128) 
0 

subject to the state equation 

2 = H#GU + n4f 

and a termi,nal constraint on E (z+ $1 In this case, however, observations 
of the state variable x are made continuously as represented by the 
observation equation 

Y' hdx+JL (2.5.129) 

where q is a Gaussian white noise with zero mean and variance r(t) ; 
that is, 

& (qj = O 
(2.5.130) 
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Note, as in.Section (2.5.2.3), the performance index can be written as 

E (J)=$ {& [J/Y]} 

Thus, letting 

; ct) = ' (' Ct)/ 9 @)) ; ; (f) = & ( x cd/;1 (4)) (2.5.132) 

and 

(2.5.133) 

it follows that 

(2.5.134) 

But the quantities s and V are given in Eqs. (2.5.63A) and (2.5.63B). 
Thus, using these expressions provides 

. 
L H&Gil + ff 4 r/d+-‘( Y- M;) 

(2.5.135) 

Note that these two equations contain the mean and covariance of the 
vector X . This fact will not effect the znalysis since the matrix 
does not depend on the control. Thus, if X is evaluated at any point, 
the corresponding value of 2 can be readily determined. Finally, let 

z=;+z (2.5.136) 

and observe that 
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Substituting this value for Z into (2.5.131) yields 

Since only the first term in this expression depends on the control, the 
problem of minimizing E(j) has been reduced to minimizing 

Follping a procedure identical to that used in Sectlon (2.5.2.3), 
let R (z,*)be the minimum value of theAperformance index in (2.5.138) 
for the solution which starts the point (t,t). Using the Dynamic 
Programming approach, it follows that 

Thus, taking the limit and using Equations ('2.5.134) and (2.5.135) provides 

0 = h,jlN 
u (*, 

t^ TQ f+ d+61zu+ E + 

This equation has the solution 

where 

. 

(2.5.139) 

(2.5.140) 
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.6 t -(h.(S~tj~fitr~f-‘~~~~n~) = 0 

5 CtJ =A 

a(+) = 0 

The optimal control takes the form 

IL=-- 4;'Grcf/yrS~ 

(2-5.141) 

(2.5.142) 

The selection of (1 to satisfy terminal constraints on the quantity 
E (I+ t*'i is accomplished as follows. Note that 

But, since the covariance p= H #~dr,,~ does not depend on y , this 
expression becomes 

(2.5.143) 

Further, since the quantity H $H is deterministic and independent 
of the control, a constraint on tF(r.+fIT) is equivalent to a constraint 
on E ($+$+T1, . Thus, if \AI (t) is given by 

w k) = P 
. i-J 

Then, using Eqs. (2.5.135) and (2.5.142), it follows that 

&=- j+&Q;‘&?%+k%- kusH~GB;‘GTqbTHT 

+ n@vMrr-'M v&' 
(2.5.144) 

with 

(2.5.145) 

146 



The matrix A is to be selected so that the simultaneous solution of the W 
and 5 equations, together with the boundary conditions in (2.5.141) and 
(2.5.145), yields a value of vy(+) which satisfies the terminal 
constraints. As in the preceding two cases, iteration will usually be 
required to accomplish the solution. Ref. (2.5.7) contains an interesting 
application of this partially observable case to the interplanetary guidance 
problem. 

2.5.3.4 Discussion 

The inclusion of the terminal constraints does not appreciably alter 
the problem, except that the solution must be accomplished iteratively, 
rather than directly. However, the iteration loop appears to be no more 
difficult than that normally encountered in optimal control problems. 
In some cases, when the number of terminal constraints is small, closed 
form solutions may be possible [ see Ref. (2.5.7) ] . 

As mentioned at the beginning of this section, the linear-quadratic 
cost problem is not typical of stochastic optimization problems. The 
reason for this is that the analysis is concerned with the solution of 
partial differential equations. The linear-quadratic cost problem is one 
of the few cases in which the variables separate, and the partial differential 
equations reduce to ordinary differential equations. 

For additional treatments of stochastic control problems, the 
interested reader should consult Refs. (2.5.1) to (2.5.7) as well as 
Chapter (7) of Ref. (2.4.1). Refs. (2.5.8) to (2.5.10) also contain an 
elegant application of stochastic control theory to the mid-course 
correction problem. 

147 



- ._ .-__-.-.-.. _ 

3.0 RECOMMENDED PROCEDURES 

The preceding sections of this report have illustrated the dual nature 
of Dynamic Progr amming as both a theoretical and computational tool. It 
is the general consensus of opinion (see Ref. (2.4.1)) that on the theore- 
tical level, Dynamic Progr amming is not as strong or as generally applicable 
as either the Calculus of Variations or the Maximum Principle. However, 
the relative strengths and weaknesses of Dynamic Programming when compared 
with the variational methods are of little importance. What is important 
is the fact that Dynamic Programming is a completely different approach to 
optimization problems and its use can provide perspective and insight into 
the solution structure of a multistage decision processes. Furthermore, 
there are some problems that are rather difficult to attack using the 
classical methods, but which readily yield to solution by means of Dynamic 
Programming. One such example is the stochastic decision problem treated 
in Section (2.5). 

On the computational side, Dynamic Programming has no equal as far as 
versatility and general applicability are concerned. Almost all optimization 
problems can be cast in the form of a multistage decision processes and 
solved by means of Dynamic Programming. However, it frequently happens 
that certain problems, or certain types of problems, are more efficiently 
handled by some other numerical method. Such is the case, for example, 
in regard to the trajectory and control problems normally encountered in 
the aerospace industry. 

It has been amply demonstrated in the last few years that optimal 
trajectory and control problems can be solved using a variational formulation 
procedure coupled with a relatively simple iterative technique such as 
quasilinearization (Ref. (3.1)), steepest ascent (Ref. 3.2)) or the 
neighboring extermal method (Ref. (3.3)). The voluminous number of papers 
and reports dealing with problem solution by this method attest to its 
effectiveness. On the other hand, there are relatively few reports which 
treat trajectory or control problems using Dynamic Programming. The reason 
for this can be partially attributed to the ffnewness'f of Dynamic Programming 
and the fact that other numerical procedures were available and were used 
before Dynamic Programming "caught on." More important, however, is the 
fact that solution generation by means of Dynamic Programming usually 
requires more computation, more storage, and more computer time than do 
the other numerical methods. 

The role of Dynamic Programmin g in the flight trajectory and control 
area should increase in the not too distant future. Presently used techniques 
have been pushed almost to their theoretical limits and leave something to 
be desired as more complex problems are considered and more constraint 
conditions included. Dynamic Progr amming, on the other hand, is limited 
only by the computer, a limitation which is continuously on the decrease 
as more rapid and flexible computing equipment is developed. 
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